Next: , Previous:   [Contents][Index]

99 Package trigtools


Trigtools Package



Aleksas Dormarkas
aleksasd873@gmail.com
aleksas.domarkas@mif.vu.lt
December 1, 2013

99.1 Introduction to trigtools

We use open-source computer algebra system(CAS) maxima 5.31.2. The trigtools package10 contains commands that help you work with trigonometric expressions. List of functions in trigtools package:


99.2 Functions and Variables for trigtools


99.2.1 Convert to sin and cos

Function: c2sin (x)
Function: c2cos (x)

The function c2sin converts the expression \(a\cos x + b\sin x\) to \(r\sin(x+\phi).\)

The function c2cos converts the expression \(a\cos x + b\sin x\) to \(r\cos(x-\phi).\)

load("trigtools") loads these functions.

Examples:

(%i1) load("trigtools")$
(%i2) c2sin(3*sin(x)+4*cos(x));
                                      4
(%o2)                  5 sin(x + atan(-))
                                      3
(%i3) trigexpand(%),expand;
(%o3)                  3 sin(x) + 4 cos(x)
(%i4) c2cos(3*sin(x)-4*cos(x));
                                       3
(%o4)                 - 5 cos(x + atan(-))
                                       4
(%i5) trigexpand(%),expand;
(%o5)                  3 sin(x) - 4 cos(x)
(%i6) c2sin(sin(x)+cos(x));
                                      %pi
(%o6)                 sqrt(2) sin(x + ---)
                                       4
(%i7) trigexpand(%),expand;
(%o7)                    sin(x) + cos(x)
(%i8) c2cos(sin(x)+cos(x));
                                      %pi
(%o8)                 sqrt(2) cos(x - ---)
                                       4
(%i9) trigexpand(%),expand;
(%o9)                    sin(x) + cos(x)

Example. Solve trigonometric equation

(%i1) eq:3*sin(x)+4*cos(x)=2;
(%o1)                3 sin(x) + 4 cos(x) = 2
(%i2) plot2d([3*sin(x)+4*cos(x),2],[x,-%pi,%pi]);
(%o2)                         false
plot1
(%i1) load("trigtools")$
(%i2) eq:3*sin(x)+4*cos(x)=2$
(%i3) eq1:c2sin(lhs(eq))=2;
                                    4
(%o3)                5 sin(x + atan(-)) = 2
                                    3
(%i4) solvetrigwarn:false$
(%i5) solve(eq1)[1]$ x1:rhs(%);
                             2         4
(%o6)                   asin(-) - atan(-)
                             5         3
(%i7) float(%), numer;
(%o7)                 - 0.5157783719341241
(%i8) eq2:c2cos(lhs(eq))=2;
                                    3
(%o8)                5 cos(x - atan(-)) = 2
                                    4
(%i9) solve(eq2,x)[1]$ x2:rhs(%);
                             3         2
(%o10)                  atan(-) + acos(-)
                             4         5
(%i11) float(%), numer;
(%o11)                  1.802780589520693
(%i12) sol:[x1,x2];
                   2         4        3         2
(%o12)       [asin(-) - atan(-), atan(-) + acos(-)]
                   5         3        4         5

Answ.: \(x = x_1 + 2\pi k,\) \(x_1 = \sin^{-1}{2\over 5} - \tan^{-1}{4\over 3},\) or \(x_1 = \tan^{-1}{3\over 4} + \cos^{-1}{2\over 5},\) for k any integer.


99.2.2 Convert to Trigonometric Functions

Function: c2trig (x)

The function c2trig (convert to trigonometric) reduce expression with hyperbolic functions sinh, cosh, tanh, coth to trigonometric expression with sin, cos, tan, cot.

load("trigtools") loads these functions.

Examples:

  1.  
    (%i1) load(trigtools)$
    
    (%i2) sinh(x)=c2trig(sinh(x));
    (%o2)               sinh(x) = - %i sin(%i x)
    
    (%i3) cosh(x)=c2trig(cosh(x));
    (%o3)                  cosh(x) = cos(%i x)
    
    (%i4) tanh(x)=c2trig(tanh(x));
    (%o4)               tanh(x) = - %i tan(%i x)
    
    (%i5) coth(x)=c2trig(coth(x));
    (%o5)                coth(x) = %i cot(%i x)
    
  2. see https://maxima.sourceforge.io/ext/list_archives/2013/msg03230.html
    (%i1) load("trigtools")$
    
    (%i2) cos(p+q*%i);
    (%o2)                     cos(%i q + p)
    
    (%i3) trigexpand(%);
    (%o3)          cos(p) cosh(q) - %i sin(p) sinh(q)
    
    (%i4) c2trig(%);
    (%o4)                     cos(%i q + p)
    
  3.  
    (%i1) load("trigtools")$
    
    (%i2) sin(a+b*%i);
    (%o2)                     sin(%i b + a)
    
    (%i3) trigexpand(%);
    (%o3)          %i cos(a) sinh(b) + sin(a) cosh(b)
    
    (%i4) c2trig(%);
    (%o4)                     sin(%i b + a)
    
  4.  
    (%i1) load("trigtools")$
    
    (%i2) cos(a*%i+b*%i);
    (%o2)                   cos(%i b + %i a)
    
    (%i3) trigexpand(%);
    (%o3)           sinh(a) sinh(b) + cosh(a) cosh(b)
    
    (%i4) c2trig(%);
    (%o4)                   cos(%i b + %i a)
    
  5.  
    (%i1) load("trigtools")$
    
    (%i2) tan(a+%i*b);
    (%o2)                     tan(%i b + a)
    
    (%i3) trigexpand(%);
                           %i tanh(b) + tan(a)
    (%o3)                 ---------------------
                          1 - %i tan(a) tanh(b)
    
    (%i4) c2trig(%);
    (%o4)                     tan(%i b + a)
    
  6.  
    (%i1) load("trigtools")$
    
    (%i2) cot(x+%i*y);
    (%o2)                     cot(%i y + x)
    
    (%i3) trigexpand(%);
                         - %i cot(x) coth(y) - 1
    (%o3)                -----------------------
                           cot(x) - %i coth(y)
    
    (%i4) c2trig(%);
    (%o4)                     cot(%i y + x)
    

99.2.3 Convert to Hyperbolic Functions

Function: c2hyp (x)

The function c2hyp (convert to hyperbolic) convert expression with exp function to expression with hyperbolic functions sinh, cosh.

load("trigtools") loads this function.

Examples:

(%i1) load("trigtools")$
(%i2) c2hyp(exp(x));
(%o2)                   sinh(x) + cosh(x)
(%i3) c2hyp(exp(x)+exp(x^2)+1);
                 2          2
(%o3)      sinh(x ) + cosh(x ) + sinh(x) + cosh(x) + 1
(%i4) c2hyp(exp(x)/(2*exp(y)-3*exp(z)));
                        sinh(x) + cosh(x)
(%o4)     ---------------------------------------------
          2 (sinh(y) + cosh(y)) - 3 (sinh(z) + cosh(z))

99.2.4 Factor Sums of sin and cos Functions

Function: trigfactor (x)

The function trigfactor factors expressions of form \(\pm \sin x \pm \cos y.\)

load("trigtools") loads this function.

Examples:

  1.  
    (%i1) load("trigtools")$
    
    (%i2) trigfactor(sin(x)+cos(x));
                                          %pi
    (%o2)                 sqrt(2) cos(x - ---)
                                           4
    
    (%i3) trigrat(%);
    (%o3)                    sin(x) + cos(x)
    
  2.  
    (%i1) load("trigtools")$
    
    (%i2) trigfactor(sin(x)+cos(y));
                         y   x   %pi      y   x   %pi
    (%o2)          2 cos(- - - + ---) cos(- + - - ---)
                         2   2    4       2   2    4
    
    (%i3) trigrat(%);
    (%o3)                    cos(y) + sin(x)
    
  3.  
    (%i1) load("trigtools")$
    
    (%i2) trigfactor(sin(x)-cos(3*y));
                       3 y   x   %pi      3 y   x   %pi
    (%o2)        2 sin(--- - - + ---) sin(--- + - - ---)
                        2    2    4        2    2    4
    
    (%i3) trigrat(%);
    (%o3)                   sin(x) - cos(3 y)
    
  4.  
    (%i1) load("trigtools")$
    
    (%i2) trigfactor(-sin(5*x)-cos(3*y));
                      3 y   5 x   %pi      3 y   5 x   %pi
    (%o2)     - 2 cos(--- - --- + ---) cos(--- + --- - ---)
                       2     2     4        2     2     4
    
    (%i3) trigrat(%);
    (%o3)                 - cos(3 y) - sin(5 x)
    
  5.  
    (%i1) load("trigtools")$
    
    (%i2) sin(alpha)+sin(beta)=trigfactor(sin(alpha)+sin(beta));
                                         beta   alpha
    (%o2) sin(beta) + sin(alpha) = 2 cos(---- - -----)
                                          2       2
                                                        beta   alpha
                                                    sin(---- + -----)
                                                         2       2
    
    (%i3) trigrat(%);
    (%o3)    sin(beta) + sin(alpha) = sin(beta) + sin(alpha)
    
  6.  
    (%i1) load("trigtools")$
    
    (%i2) sin(alpha)-sin(beta)=trigfactor(sin(alpha)-sin(beta));
                                           beta   alpha
    (%o2) sin(alpha) - sin(beta) = - 2 sin(---- - -----)
                                            2       2
                                                        beta   alpha
                                                    cos(---- + -----)
                                                         2       2
    
  7.  
    (%i1) load("trigtools")$
    
    (%i2) cos(alpha)+cos(beta)=trigfactor(cos(alpha)+cos(beta));
                                         beta   alpha
    (%o2) cos(beta) + cos(alpha) = 2 cos(---- - -----)
                                          2       2
                                                        beta   alpha
                                                    cos(---- + -----)
                                                         2       2
    
  8.  
    (%i1) load("trigtools")$
    
    (%i2) cos(alpha)-cos(beta)=trigfactor(cos(alpha)-cos(beta));
                                         beta   alpha
    (%o2) cos(alpha) - cos(beta) = 2 sin(---- - -----)
                                          2       2
                                                        beta   alpha
                                                    sin(---- + -----)
                                                         2       2
    
  9.  
    (%i1) load("trigtools")$
    
    (%i2) trigfactor(3*sin(x)+7*cos(x));
    (%o2)                  3 sin(x) + 7 cos(x)
    
    (%i3) c2sin(%);
                                              7
    (%o3)               sqrt(58) sin(x + atan(-))
                                              3
    
    (%i4) trigexpand(%),expand;
    (%o4)                  3 sin(x) + 7 cos(x)
    
  10.  
    (%i1) load("trigtools")$
    
    (%i2) trigfactor(sin(2*x));
    (%o2)                       sin(2 x)
    
    (%i3) trigexpand(%);
    (%o3)                    2 cos(x) sin(x)
    

99.2.5 Solve Trigonometric Equations

Function: trigsolve (x)

The function trigsolve find solutions of trigonometric equation from interval \([a,b).\)

load("trigtools") loads this function.

Examples:

  1.  
    (%i1) eq:eq:3*sin(x)+4*cos(x)=2;
    (%o1)                3 sin(x) + 4 cos(x) = 2
    
    (%i2) plot2d([3*sin(x)+4*cos(x),2],[x,-%pi,%pi]);
    (%o2)                         false
    
    plot2
    (%i1) load("trigtools")$
    (%i2) eq:eq:3*sin(x)+4*cos(x)=2$
    
    (%i3) sol:trigsolve(eq,-%pi,%pi);
                2 sqrt(21)   12              2 sqrt(21)   12
    (%o3) {atan(---------- - --), %pi - atan(---------- + --)}
                    5        5                   5        5
    
    (%i4) float(%), numer;
    (%o4)      {- 0.5157783719341241, 1.8027805895206928}
    

    Answ. : \(x = \tan^{-1}\left({2\sqrt{21}\over 5} - {12\over 5}\right) + 2\pi k\) ; \(x = \pi - \tan^{-1}\left({2\sqrt{21}\over 5} + {12\over 5}\right) + 2\pi k,\) k – any integer.

  2.  
    (%i1) load("trigtools")$
    
    (%i2) eq:cos(3*x)-sin(x)=sqrt(3)*(cos(x)-sin(3*x));
    (%o2)    cos(3 x) - sin(x) = sqrt(3) (cos(x) - sin(3 x))
    
    (%i3) plot2d([lhs(eq)-rhs(eq)], [x,0,2*%pi])$
    
    plot3

    We have 6 solutions from [0, 2*pi].

    (%i1) load("trigtools")$
    (%i2) eq:cos(3*x)-sin(x)=sqrt(3)*(cos(x)-sin(3*x))$
    (%i3) plot2d([lhs(eq)-rhs(eq)], [x,0.2,0.5])$
    
    plot4
    (%i1) load("trigtools")$
    (%i2) load("trigtools")$
    (%i3) eq:cos(3*x)-sin(x)=sqrt(3)*(cos(x)-sin(3*x))$
    (%i4) plot2d([lhs(eq)-rhs(eq)], [x,3.3,3.6])$
    
    plot4
    (%i1) load("trigtools")$
    (%i2) eq:cos(3*x)-sin(x)=sqrt(3)*(cos(x)-sin(3*x))$
    
    (%i3) trigfactor(lhs(eq))=map(trigfactor,rhs(eq));
                      %pi            %pi
    (%o3) - 2 sin(x + ---) sin(2 x - ---) = 
                       4              4
                                                  %pi            %pi
                                2 sqrt(3) sin(x - ---) sin(2 x - ---)
                                                   4              4
    
    (%i4) factor(lhs(%)-rhs(%));
                   4 x + %pi                4 x - %pi
    (%o4) - 2 (sin(---------) + sqrt(3) sin(---------))
                       4                        4
                                                           8 x - %pi
                                                       sin(---------)
                                                               4
    

    Equation is equivalent to

    (%i1) load("trigtools")$
    (%i2) eq:cos(3*x)-sin(x)=sqrt(3)*(cos(x)-sin(3*x))$
    
    (%i3) trigfactor(lhs(eq))=map(trigfactor,rhs(eq));
                      %pi            %pi
    (%o3) - 2 sin(x + ---) sin(2 x - ---) = 
                       4              4
                                                  %pi            %pi
                                2 sqrt(3) sin(x - ---) sin(2 x - ---)
                                                   4              4
    
    (%i4) L:factor(rhs(%)-lhs(%));
                 4 x + %pi                4 x - %pi       8 x - %pi
    (%o4) 2 (sin(---------) + sqrt(3) sin(---------)) sin(---------)
                     4                        4               4
    
    (%i5) eq1:part(L,2)=0;
                   4 x + %pi                4 x - %pi
    (%o5)      sin(---------) + sqrt(3) sin(---------) = 0
                       4                        4
    
    (%i6) eq2:part(L,3)=0;
                               8 x - %pi
    (%o6)                  sin(---------) = 0
                                   4
    
    (%i7) S1:trigsolve(eq1,0,2*%pi);
                               %pi  13 %pi
    (%o7)                     {---, ------}
                               12     12
    
    (%i8) S2:trigsolve(eq2,0,2*%pi);
                        %pi  5 %pi  9 %pi  13 %pi
    (%o8)              {---, -----, -----, ------}
                         8     8      8      8
    
    (%i9) S:listify(union(S1,S2));
                 %pi  %pi  5 %pi  13 %pi  9 %pi  13 %pi
    (%o9)       [---, ---, -----, ------, -----, ------]
                 12    8     8      12      8      8
    
    (%i10) float(%), numer;
    (%o10) [0.2617993877991494, 0.39269908169872414, 
    1.9634954084936207, 3.4033920413889422, 3.5342917352885173, 
    5.105088062083414]
    

    Answer: \(x = a + 2\pi k,\) where a any from S, k any integer.

  3.  
    (%i1) load("trigtools")$
    
    (%i2) eq:8*cos(x)*cos(4*x)*cos(5*x)-1=0;
    (%o2)          8 cos(x) cos(4 x) cos(5 x) - 1 = 0
    
    (%i3) trigrat(%);
    (%o3)     2 cos(10 x) + 2 cos(8 x) + 2 cos(2 x) + 1 = 0
    

    Left side is periodic with period \(T=\pi.\)

    We have 10 solutions from [0, pi].

    (%i1) load("trigtools")$
    (%i2) eq:8*cos(x)*cos(4*x)*cos(5*x)-1=0$
    
    (%i3) plot2d([lhs(eq),rhs(eq)],[x,0,%pi]);
    (%o3)                         false
    
    plot6
    (%i1) load("trigtools")$
    (%i2) eq:8*cos(x)*cos(4*x)*cos(5*x)-1=0$
    
    (%i3) x4:find_root(eq, x, 1.3, 1.32);
    (%o3)                  1.3089969389957472
    
    (%i4) x5:find_root(eq, x, 1.32, 1.35);
    (%o4)                  1.3463968515384828
    
    (%i5) plot2d([lhs(eq),0], [x,1.3,1.35], [gnuplot_preamble, "set grid;"]);
    (%o5)                         false
    
    plot7

    Equation we multiply by \(2\sin x\cos 2x:\)

    (%i1) load("trigtools")$
    (%i2) eq:8*cos(x)*cos(4*x)*cos(5*x)-1=0$
    
    (%i3) eq*2*sin(x)*cos(2*x);
    (%o3) 2 sin(x) cos(2 x) (8 cos(x) cos(4 x) cos(5 x) - 1) = 0
    
    (%i4) eq1:trigreduce(%),expand;
    (%o4)                sin(13 x) + sin(x) = 0
    
    (%i5) trigfactor(lhs(eq1))=0;
    (%o5)                2 cos(6 x) sin(7 x) = 0
    
    (%i6) S1:trigsolve(cos(6*x),0,%pi);
                  %pi  %pi  5 %pi  7 %pi  3 %pi  11 %pi
    (%o6)        {---, ---, -----, -----, -----, ------}
                  12    4    12     12      4      12
    
    (%i7) S2:trigsolve(sin(7*x),0,%pi);
                   %pi  2 %pi  3 %pi  4 %pi  5 %pi  6 %pi
    (%o7)      {0, ---, -----, -----, -----, -----, -----}
                    7     7      7      7      7      7
    

    We remove solutions of \(\sin x = 0\) and \(\cos 2x = 0.\)

    (%i1) load("trigtools")$
    (%i2) S1:trigsolve(cos(6*x),0,%pi)$
    (%i3) S2:trigsolve(sin(7*x),0,%pi)$
    
    (%i4) S3:trigsolve(sin(x),0,%pi);
    (%o4)                          {0}
    
    (%i5) S4:trigsolve(cos(2*x),0,%pi);
                               %pi  3 %pi
    (%o5)                     {---, -----}
                                4     4
    

    We find 10 solutions from \([0, \pi]:\)

    (%i1) load("trigtools")$
    (%i2) S1:trigsolve(cos(6*x),0,%pi)$
    (%i3) S2:trigsolve(sin(7*x),0,%pi)$
    (%i4) S3:trigsolve(sin(x),0,%pi)$
    (%i5) S4:trigsolve(cos(2*x),0,%pi)$
    
    (%i6) union(S1,S2)$ setdifference(%,S3)$ setdifference(%,S4);
           %pi  %pi  2 %pi  5 %pi  3 %pi  4 %pi  7 %pi  5 %pi
    (%o8) {---, ---, -----, -----, -----, -----, -----, -----, 
           12    7     7     12      7      7     12      7
                                                       6 %pi  11 %pi
                                                       -----, ------}
                                                         7      12
    
    (%i9) S:listify(%);
           %pi  %pi  2 %pi  5 %pi  3 %pi  4 %pi  7 %pi  5 %pi
    (%o9) [---, ---, -----, -----, -----, -----, -----, -----, 
           12    7     7     12      7      7     12      7
                                                       6 %pi  11 %pi
                                                       -----, ------]
                                                         7      12
    
    (%i10) length(S);
    (%o10)                         10
    
    (%i11) float(S), numer;
    (%o11) [0.2617993877991494, 0.4487989505128276, 
    0.8975979010256552, 1.3089969389957472, 1.3463968515384828, 
    1.7951958020513104, 1.8325957145940461, 2.243994752564138, 
    2.6927937030769655, 2.8797932657906435]
    

    Answer: \(x = a + 2\pi k,\) where a any from S, k any integer.


99.2.6 Evaluation of Trigonometric Functions

Function: trigvalue (x)

The function trigvalue compute values of \(\sin {m\pi\over n},\) \(\cos {m\pi\over n},\) \(\tan {m\pi\over n},\) and \(\cot {m\pi\over n}\) in radicals.

trigvalue is essentially an internal function. Use function trigeval in preference.

load("trigtools") loads this function.

Function: trigeval (x)

The function trigeval compute values of expressions with \(\sin {m\pi\over n},\) \(\cos {m\pi\over n},\) \(\tan {m\pi\over n},\) and \(\cot {m\pi\over n}\) in radicals.

load("trigtools") loads this function.

Examples:

  1. Values of trigonometric functions
    (%i1) load("trigtools")$
    (%i2) load(trigtools)$
    
    (%i3) trigvalue(sin(%pi/10));
                               sqrt(5) - 1
    (%o3)                      -----------
                                    4
    
    (%i4) trigvalue(cos(%pi/10));
                            sqrt(sqrt(5) + 5)
    (%o4)                   -----------------
                                   3/2
                                  2
    
    (%i5) trigvalue(tan(%pi/10));
                           sqrt(5 - 2 sqrt(5))
    (%o5)                  -------------------
                                 sqrt(5)
    
    (%i6) float(%), numer;
    (%o6)                  0.3249196962329063
    
    (%i7) float(tan(%pi/10)), numer;
    (%o7)                  0.3249196962329063
    
    (%i8) trigvalue(cot(%pi/10));
    (%o8)                  sqrt(2 sqrt(5) + 5)
    
    (%i9) float(%), numer;
    (%o9)                  3.0776835371752536
    
    (%i10) float(cot(%pi/10)), numer;
    (%o10)                  3.077683537175254
    
    (%i11) trigvalue(sin(%pi/32));
                  sqrt(2 - sqrt(sqrt(sqrt(2) + 2) + 2))
    (%o11)        -------------------------------------
                                    2
    
    (%i12) trigvalue(cos(%pi/32));
                  sqrt(sqrt(sqrt(sqrt(2) + 2) + 2) + 2)
    (%o12)        -------------------------------------
                                    2
    
    (%i13) trigvalue(cos(%pi/256));
    (%o13) sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(2) + 2) + 2) + 2) + 2)
                                                          + 2) + 2)/2
    
    (%i14) trigvalue(cos(%pi/60));
    (%o14) 
      sqrt(sqrt(sqrt(2) sqrt(3) sqrt(sqrt(5) + 5) + sqrt(5) + 7) + 4)
      ---------------------------------------------------------------
                                    3/2
                                   2
    
    (%i15) trigvalue(sin(%pi/60));
    (%o15) 
      sqrt(4 - sqrt(sqrt(2) sqrt(3) sqrt(sqrt(5) + 5) + sqrt(5) + 7))
      ---------------------------------------------------------------
                                    3/2
                                   2
    
    (%i16) trigvalue(sin(%pi/18));
                                    %pi
    (%o16)                      sin(---)
                                    18
    
    (%i17) trigvalue(sin(%pi/20));
                   sqrt(4 - sqrt(2) sqrt(sqrt(5) + 5))
    (%o17)         -----------------------------------
                                   3/2
                                  2
    
  2. ode example
    (%i1) load("trigtools")$
    (%i2) load(odes)$
    
    (%i3) eq:'diff(y,x,5)+2*y=0;
                               5
                              d y
    (%o3)                     --- + 2 y = 0
                                5
                              dx
    
    (%i4) odeL(eq,y,x);
                   1/5     4 %pi
                - 2    cos(-----) x
                             5              1/5     4 %pi
    (%o4) y = %e                    C5 sin(2    sin(-----) x)
                                                      5
            1/5     4 %pi
         - 2    cos(-----) x
                      5              1/5     4 %pi
     + %e                    C4 cos(2    sin(-----) x)
                                               5
            1/5     2 %pi
         - 2    cos(-----) x
                      5              1/5     2 %pi
     + %e                    C3 sin(2    sin(-----) x)
                                               5
            1/5     2 %pi
         - 2    cos(-----) x
                      5              1/5     2 %pi
     + %e                    C2 cos(2    sin(-----) x)
                                               5
            1/5
         - 2    x
     + %e         C1
    
    (%i5) sol:trigeval(%);
                  (sqrt(5) - 1) x
                - ---------------
                        9/5
                       2                 sqrt(sqrt(5) + 5) x
    (%o5) y = %e                  C3 sin(-------------------)
                                                13/10
                                               2
           (sqrt(5) - 1) x
         - ---------------
                 9/5
                2                 sqrt(sqrt(5) + 5) x
     + %e                  C2 cos(-------------------)
                                         13/10
                                        2
         (sqrt(5) + 1) x
         ---------------
               9/5
              2                 sqrt(5 - sqrt(5)) x
     + %e                C5 sin(-------------------)
                                       13/10
                                      2
         (sqrt(5) + 1) x
         ---------------
               9/5                                          1/5
              2                 sqrt(5 - sqrt(5)) x      - 2    x
     + %e                C4 cos(-------------------) + %e         C1
                                       13/10
                                      2
    
    (%i6) subst(sol,eq)$
    (%i7) ev(%, nouns)$
    
    (%i8) radcan(%);
    (%o8)                         0 = 0
    
  3. n-th root of complex number

    Example. Find the 4-th roots of %i

    (%i1) load("trigtools")$
    
    (%i2) solve(x^4=%i,x);
                    1/8                1/8             1/8
    (%o2) [x = (- 1)    %i, x = - (- 1)   , x = - (- 1)    %i, 
                                                                 1/8
                                                        x = (- 1)   ]
    
    (%i3) rectform(%);
                      %pi        %pi                %pi        %pi
    (%o3) [x = %i cos(---) - sin(---), x = - %i sin(---) - cos(---), 
                       8          8                  8          8
                      %pi           %pi              %pi        %pi
              x = sin(---) - %i cos(---), x = %i sin(---) + cos(---)]
                       8             8                8          8
    
    (%i4) trigeval(%);
               sqrt(sqrt(2) + 2) %i   sqrt(2 - sqrt(2))
    (%o4) [x = -------------------- - -----------------, 
                        2                     2
          sqrt(2 - sqrt(2)) %i   sqrt(sqrt(2) + 2)
    x = - -------------------- - -----------------, 
                   2                     2
        sqrt(2 - sqrt(2))   sqrt(sqrt(2) + 2) %i
    x = ----------------- - --------------------, 
                2                    2
        sqrt(2 - sqrt(2)) %i   sqrt(sqrt(2) + 2)
    x = -------------------- + -----------------]
                 2                     2
    

99.2.7 Contract atan Functions

Function: atan_contract (r)

The function atan_contract(r) contracts atan functions. We assume: \(|r| < {\pi\over 2}.\)

load("trigtools") loads this function.

Examples:

  1.  
    (%i1) load("trigtools")$
    
    (%i2) atan_contract(atan(x)+atan(y));
    (%o2)                   atan(y) + atan(x)
    
    (%i3) assume(abs(atan(x)+atan(y))<%pi/2)$
    
    (%i4) atan(x)+atan(y)=atan_contract(atan(x)+atan(y));
                                              y + x
    (%o4)           atan(y) + atan(x) = atan(-------)
                                             1 - x y
    
  2.  
    (%i1) load("trigtools")$
    
    (%i2) atan(1/3)+atan(1/5)+atan(1/7)+atan(1/8)$ %=atan_contract(%);
                    1         1         1         1    %pi
    (%o3)      atan(-) + atan(-) + atan(-) + atan(-) = ---
                    3         5         7         8     4
    
  3. Machin’s formulae
    (%i1) load("trigtools")$
    
    (%i2) 4*atan(1/5)-atan(1/239)=atan_contract(4*atan(1/5)-atan(1/239));
                              1          1     %pi
    (%o2)              4 atan(-) - atan(---) = ---
                              5         239     4
    
  4. see https://en.wikipedia.org/wiki/Machin-like_formula
    (%i1) load("trigtools")$
    (%i2) 12*atan(1/49)+32*atan(1/57)-5*atan(1/239)+12*atan(1/110443)$
    
    (%i3) %=atan_contract(%);
                  1             1             1
    (%o3) 12 atan(--) + 32 atan(--) - 5 atan(---)
                  49            57           239
                                                          1       %pi
                                              + 12 atan(------) = ---
                                                        110443     4
    

99.3 References

  1. https://maxima.sourceforge.io

Footnotes

(10)

This is a conversion by hand of the original “trigtools-doc.pdf” file in “share/contrib/trigtools”, by Raymond Toy. See the pdf for the definitive version.


Next: , Previous:   [Contents][Index]