Vorige: Introduction to zeilberger, Nach oben: zeilberger [Inhalt][Index]
Returns the hypergeometric anti-difference of \(F_k\), if it exists.
Otherwise AntiDifference returns no_hyp_antidifference.
Returns the rational certificate \(R(k)\) for \(F_k\), that is, a
rational function such that
\(F_k = R(k+1) F_(k+1) - R(k) F_k\),
if it exists.  Otherwise, Gosper returns no_hyp_sol.
Returns the summmation of \(F_k\) from k = a to 
k = b if \(F_k\) has a hypergeometric anti-difference.
Otherwise, GosperSum returns nongosper_summable.
Examples:
(%i1) load ("zeilberger")$
(%i2) GosperSum ((-1)^k*k / (4*k^2 - 1), k, 1, n);
Dependent equations eliminated:  (1)
                           3       n + 1
                      (n + -) (- 1)
                           2               1
(%o2)               - ------------------ - -
                                  2        4
                      2 (4 (n + 1)  - 1)
(%i3) GosperSum (1 / (4*k^2 - 1), k, 1, n);
                                3
                          - n - -
                                2       1
(%o3)                  -------------- + -
                                2       2
                       4 (n + 1)  - 1
(%i4) GosperSum (x^k, k, 1, n);
                          n + 1
                         x          x
(%o4)                    ------ - -----
                         x - 1    x - 1
(%i5) GosperSum ((-1)^k*a! / (k!*(a - k)!), k, 1, n);
                                n + 1
                a! (n + 1) (- 1)              a!
(%o5)       - ------------------------- - ----------
              a (- n + a - 1)! (n + 1)!   a (a - 1)!
(%i6) GosperSum (k*k!, k, 1, n); Dependent equations eliminated: (1) (%o6) (n + 1)! - 1
(%i7) GosperSum ((k + 1)*k! / (k + 1)!, k, 1, n);
                  (n + 1) (n + 2) (n + 1)!
(%o7)             ------------------------ - 1
                          (n + 2)!
(%i8) GosperSum (1 / ((a - k)!*k!), k, 1, n); (%o8) NON_GOSPER_SUMMABLE
Attempts to find a d-th order recurrence for \(F_(n,k)\).
The algorithm yields a sequence \([s_1, s_2, ..., s_m]\) of solutions. Each solution has the form
\([R(n, k), [a_0, a_1, ..., a_d]]\).
parGosper returns [] if it fails to find a recurrence.
Attempts to compute the indefinite hypergeometric summation of \(F_(n,k)\).
Zeilberger first invokes Gosper, and if that fails to find a
solution, then invokes parGosper with order 1, 2, 3, ..., up to
MAX_ORD.  If Zeilberger finds a solution before reaching MAX_ORD,
it stops and returns the solution.
The algorithms yields a sequence \([s_1, s_2, ..., s_m]\) of solutions. Each solution has the form
\([R(n,k), [a_0, a_1, ..., a_d]].\)
Zeilberger returns [] if it fails to find a solution.
Zeilberger invokes Gosper only if Gosper_in_Zeilberger is 
true.
Default value: 5
MAX_ORD is the maximum recurrence order attempted by Zeilberger.
Default value: false
When simplified_output is true, functions in the zeilberger
package attempt further simplification of the solution.
Default value: linsolve
linear_solver names the solver which is used to solve the system
of equations in Zeilberger’s algorithm.
Default value: true
When warnings is true, functions in the zeilberger package
print warning messages during execution.
Default value: true
When Gosper_in_Zeilberger is true, the Zeilberger function
calls Gosper before calling parGosper.  Otherwise,
Zeilberger goes immediately to parGosper.
Default value: true
When trivial_solutions is true, Zeilberger returns
solutions which have certificate equal to zero, or all coefficients equal to
zero.
Vorige: Introduction to zeilberger, Nach oben: zeilberger [Inhalt][Index]