Anterior: Introducción a finance, Subir: finance [Índice general][Índice]
Calcula la distancia entre 2 fechas, asumiendo años de 360 dias y meses de 30 días.
Ejemplo:
(%i1) load("finance")$ (%i2) days360(2008,12,16,2007,3,25); (%o2) - 621
Calcular el Valor Futuro a partir de uno en el Presente para una tasa de interés dada. rate es la tasa de interés, PV es el valor prestente y num es el número de periodos.
Ejemplo:
(%i1) load("finance")$ (%i2) fv(0.12,1000,3); (%o2) 1404.928
Calcula el valor actual de un valor futuro dada la tasa de interés. rate es la tasa de interés, FV es el valor futuro y num es el número de periodos.
Ejemplo:
(%i1) load("finance")$ (%i2) pv(0.12,1000,3); (%o2) 711.7802478134108
Grafica el flujo de caja en una línea de tiempo, los valores positivos están en azul y hacia arriba; los negativos están en rojo y hacia abajo. La dirección del flujo está dada por el signo de los valores. val es una lista de los valores del flujo de caja.
Ejemplo:
(%i1) load("finance")$ (%i2) graph_flow([-5000,-3000,800,1300,1500,2000])$
Calcula una anualidad conociendo el valor presente (tipo deuda), para unos pagos periódicos y constantes. rate es la tasa de interés, PV es el valor presente y num es el número de periodos.
Ejemplo:
(%i1) load("finance")$ (%i2) annuity_pv(0.12,5000,10); (%o2) 884.9208207992202
Calcula una anualidad conociendo el valor deseado (valor futuro), para una serie de pagos periódicos y constantes. rate es la tasa de interés, FV es el valor futuroe y num es el número de periodos.
Ejemplo:
(%i1) load("finance")$ (%i2) annuity_fv(0.12,65000,10); (%o2) 3703.970670389863
Calcula una anualidad conociendo el valor presente (tipo deuda) en una serie de pagos periodicos crecientes. rate es la tasa de interés, growing_rate es el crecimiento de los pagos, PV es el valor presente, y num es el número de periodos.
Ejemplo:
(%i1) load("finance")$ (%i2) geo_annuity_pv(0.14,0.05,5000,10); (%o2) 802.6888176505123
Calcular una anualidad conociendo el valor deseado (valor futuro) en una serie de pagos periodicos crecientes. rate es la tasa de interés, growing_rate es el crecimiento de los pagos, FV es el valor futuro, y num es el número de periodos.
Ejemplo:
(%i1) load("finance")$ (%i2) geo_annuity_fv(0.14,0.05,5000,10); (%o2) 216.5203395312695
La tabla de amortización determinada por una tasa. Siendo rate es la tasa de interés, amount es el valor de la deuda, and num es el número de periodos.
Ejemplo:
(%i1) load("finance")$ (%i2) amortization(0.05,56000,12)$ "n" "Balance" "Interest" "Amortization" "Payment" 0.000 56000.000 0.000 0.000 0.000 1.000 52481.777 2800.000 3518.223 6318.223 2.000 48787.643 2624.089 3694.134 6318.223 3.000 44908.802 2439.382 3878.841 6318.223 4.000 40836.019 2245.440 4072.783 6318.223 5.000 36559.597 2041.801 4276.422 6318.223 6.000 32069.354 1827.980 4490.243 6318.223 7.000 27354.599 1603.468 4714.755 6318.223 8.000 22404.106 1367.730 4950.493 6318.223 9.000 17206.088 1120.205 5198.018 6318.223 10.000 11748.170 860.304 5457.919 6318.223 11.000 6017.355 587.408 5730.814 6318.223 12.000 0.000 300.868 6017.355 6318.223
La tabla de amortización determinada por una tasa específica y unos pagos crecientes
se puede hallar con arit_amortization
.
Nótese que los pagos no son constantes, estos presentan
un crecimiento aritmético, el incremento es la diferencia entre dos
filas consecutivas en la columna "Payment".
rate es la tasa de interés, increment es el incremento, amount
es el valor de la deuda, and num es el número de periodos.
Ejemplo:
(%i1) load("finance")$ (%i2) arit_amortization(0.05,1000,56000,12)$ "n" "Balance" "Interest" "Amortization" "Payment" 0.000 56000.000 0.000 0.000 0.000 1.000 57403.679 2800.000 -1403.679 1396.321 2.000 57877.541 2870.184 -473.863 2396.321 3.000 57375.097 2893.877 502.444 3396.321 4.000 55847.530 2868.755 1527.567 4396.321 5.000 53243.586 2792.377 2603.945 5396.321 6.000 49509.443 2662.179 3734.142 6396.321 7.000 44588.594 2475.472 4920.849 7396.321 8.000 38421.703 2229.430 6166.892 8396.321 9.000 30946.466 1921.085 7475.236 9396.321 10.000 22097.468 1547.323 8848.998 10396.321 11.000 11806.020 1104.873 10291.448 11396.321 12.000 -0.000 590.301 11806.020 12396.321
La tabla de amortización determinada por la tasa, el valor de la deuda,
y el número de periodos se puede hallar con geo_amortization
.
Nótese que los pagos no son constantes, estos presentan un
crecimiento geométrico, growin_rate es entonces el cociente entre
dos filas consecutivas de la columna "Payment".
rate es la tasa de interés, growing_rate es el crecimeinto de los pagos, amount
es el valor de la deuda, y num es el numero de periodos.
Ejemplo:
(%i1) load("finance")$ (%i2) geo_amortization(0.05,0.03,56000,12)$ "n" "Balance" "Interest" "Amortization" "Payment" 0.000 56000.000 0.000 0.000 0.000 1.000 53365.296 2800.000 2634.704 5434.704 2.000 50435.816 2668.265 2929.480 5597.745 3.000 47191.930 2521.791 3243.886 5765.677 4.000 43612.879 2359.596 3579.051 5938.648 5.000 39676.716 2180.644 3936.163 6116.807 6.000 35360.240 1983.836 4316.475 6300.311 7.000 30638.932 1768.012 4721.309 6489.321 8.000 25486.878 1531.947 5152.054 6684.000 9.000 19876.702 1274.344 5610.176 6884.520 10.000 13779.481 993.835 6097.221 7091.056 11.000 7164.668 688.974 6614.813 7303.787 12.000 0.000 358.233 7164.668 7522.901
La tabla que presenta los valores para un ahorro constante y
periódico se pueden hallar con saving
.
amount representa la cantidad deseada y num el número de
periodos durante los que se ahorrará.
Ejemplo:
(%i1) load("finance")$ (%i2) saving(0.15,12000,15)$ "n" "Balance" "Interest" "Payment" 0.000 0.000 0.000 0.000 1.000 252.205 0.000 252.205 2.000 542.240 37.831 252.205 3.000 875.781 81.336 252.205 4.000 1259.352 131.367 252.205 5.000 1700.460 188.903 252.205 6.000 2207.733 255.069 252.205 7.000 2791.098 331.160 252.205 8.000 3461.967 418.665 252.205 9.000 4233.467 519.295 252.205 10.000 5120.692 635.020 252.205 11.000 6141.000 768.104 252.205 12.000 7314.355 921.150 252.205 13.000 8663.713 1097.153 252.205 14.000 10215.474 1299.557 252.205 15.000 12000.000 1532.321 252.205
Calcular el valor presente neto de una serie de valores para evaluar la viabilidad de un proyecto. flowValues es una lista con los valores para cada periodo.
Ejemplo:
(%i1) load("finance")$ (%i2) npv(0.25,[100,500,323,124,300]); (%o2) 714.4703999999999
Tasa interna de retorno (en inglés Internal Rate of Return - IRR), es el valor de tasa que hace que el Valor Presente Neto (NPV) sea cero. flowValues los valores para cada periodo (para periodos mayores a 0) y I0 el valor para el periodo cero.
Ejemplo:
(%i1) load("finance")$ (%i2) res:irr([-5000,0,800,1300,1500,2000],0)$ (%i3) rhs(res[1][1]); (%o3) .03009250374237132
Calcular la relación Beneficio/Costo, Beneficio es el Valor Presente Neto (NPV) de los flujos de caja positivos (inputs), y Costo es el Valor Presente Neto de los flujos de caja negativos (outputs). Nótese que si se desea tener un valor de cero para un periodo especifico, esta entrada/salida debe indicarse como cero para ese periodo. rate es la tasa de interés, input es una lista con los ingresos, y output es una lista con los egresos.
Ejemplo:
(%i1) load("finance")$ (%i2) benefit_cost(0.24,[0,300,500,150],[100,320,0,180]); (%o2) 1.427249324905784
Anterior: Introducción a finance, Subir: finance [Índice general][Índice]