Siguiente: , Anterior: , Subir: Funciones elípticas   [Índice general][Índice]

16.1 Introducción a las funciones e integrales elípticas

Maxima da soporte para las funciones elípticas jacobianas y para las integrales elípticas completas e incompletas. Esto incluye la manipulación simbólica de estas funciones y su evaluación numérica. Las definiciones de estas funciones y de muchas de sus propiedades se pueden encontrar en Abramowitz y Stegun, capítulos 16–17, que es la fuente principal utilizada para su programación en Maxima, aunque existen algunas diferencias.

En particular, todas las funciones e integrales elípticas utilizan el parámero \(m\) en lugar del módulo \(k\) o del ángulo \(alfa\). Esta es una de las diferencias con Abramowitz y Stegun, que utilizan el ángulo para las funciones elípticas. Las siguientes relaciones son válidas:

\(m = k^2\) y \(k = sin(alfa)\).

Las funciones e integrales elípticas en Maxima tienen como objetivo primordial dar soporte al cálculo simbólico, de ahí que también estén incluidas la mayoría de las derivadas e integrales asociadas a estas funciones. No obstante lo anterior, si los argumentos dados a las funciones son decimales en coma flotante, los resultados también serán decimales.

Sin embargo, la mayoría de las propiedades no realacionadas con las derivadas de las funciones e integrales elípticas todavía no han sido programadas en Maxima.

Algunos ejemplos de funciones elípticas:

(%i1) jacobi_sn (u, m);
(%o1)                    jacobi_sn(u, m)
(%i2) jacobi_sn (u, 1);
(%o2)                        tanh(u)
(%i3) jacobi_sn (u, 0);
(%o3)                        sin(u)
(%i4) diff (jacobi_sn (u, m), u);
(%o4)            jacobi_cn(u, m) jacobi_dn(u, m)
(%i5) diff (jacobi_sn (u, m), m);
(%o5) jacobi_cn(u, m) jacobi_dn(u, m)

      elliptic_e(asin(jacobi_sn(u, m)), m)
 (u - ------------------------------------)/(2 m)
                     1 - m

            2
   jacobi_cn (u, m) jacobi_sn(u, m)
 + --------------------------------
              2 (1 - m)

Algunos ejemplos de integrales elípticas:

(%i1) elliptic_f (phi, m);
(%o1)                  elliptic_f(phi, m)
(%i2) elliptic_f (phi, 0);
(%o2)                          phi
(%i3) elliptic_f (phi, 1);
                               phi   %pi
(%o3)                  log(tan(--- + ---))
                                2     4
(%i4) elliptic_e (phi, 1);
(%o4)                       sin(phi)
(%i5) elliptic_e (phi, 0);
(%o5)                          phi
(%i6) elliptic_kc (1/2);
                                     1
(%o6)                    elliptic_kc(-)
                                     2
(%i7) makegamma (%);
                                 2 1
                            gamma (-)
                                   4
(%o7)                      -----------
                           4 sqrt(%pi)
(%i8) diff (elliptic_f (phi, m), phi);
                                1
(%o8)                 ---------------------
                                    2
                      sqrt(1 - m sin (phi))
(%i9) diff (elliptic_f (phi, m), m);
       elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m)
(%o9) (-----------------------------------------------
                              m

                                 cos(phi) sin(phi)
                             - ---------------------)/(2 (1 - m))
                                             2
                               sqrt(1 - m sin (phi))

El paquete para funciones e integrales elípticas fue programado por Raymond Toy. Se distribuye, igual que Maxima, bajo la General Public License (GPL).


Siguiente: , Anterior: , Subir: Funciones elípticas   [Índice general][Índice]

Información de licencia de JavaScript