Previous: Number Theory, Up: Number Theory [Contents][Index]
Returns the n’th Bernoulli number for integer n.
Bernoulli numbers equal to zero are suppressed if zerobern
is
false
.
See also burn
.
(%i1) zerobern: true$ (%i2) map (bern, [0, 1, 2, 3, 4, 5, 6, 7, 8]); 1 1 1 1 1 (%o2) [1, - -, -, 0, - --, 0, --, 0, - --] 2 6 30 42 30 (%i3) zerobern: false$ (%i4) map (bern, [0, 1, 2, 3, 4, 5, 6, 7, 8]); 1 1 1 1 1 5 691 7 (%o4) [1, - -, -, - --, --, - --, --, - ----, -] 2 6 30 42 30 66 2730 6
Returns the n’th Bernoulli polynomial in the variable x.
Returns the Riemann zeta function for the argument s. The return value is a big float (bfloat); n is the number of digits in the return value.
Returns the Hurwitz zeta function for the arguments s and h. The return value is a big float (bfloat); n is the number of digits in the return value.
The Hurwitz zeta function is defined as
inf ==== \ 1 zeta (s,h) = > -------- / s ==== (k + h) k = 0
load ("bffac")
loads this function.
Returns a rational number, which is an approximation of the n’th Bernoulli
number for integer n. burn
exploits the observation that
(rational) Bernoulli numbers can be approximated by (transcendental) zetas with
tolerable efficiency:
n - 1 1 - 2 n (- 1) 2 zeta(2 n) (2 n)! B(2 n) = ------------------------------------ 2 n %pi
burn
may be more efficient than bern
for large, isolated n
as bern
computes all the Bernoulli numbers up to index n before
returning. burn
invokes the approximation for even integers n >
255
. For odd integers and n <= 255
the function bern
is called.
load ("bffac")
loads this function. See also bern
.
Solves the system of congruences x = r_1 mod m_1
, …, x = r_n mod m_n
.
The remainders r_n may be arbitrary integers while the moduli m_n have to be
positive and pairwise coprime integers.
(%i1) mods : [1000, 1001, 1003, 1007]; (%o1) [1000, 1001, 1003, 1007] (%i2) lreduce('gcd, mods); (%o2) 1 (%i3) x : random(apply("*", mods)); (%o3) 685124877004 (%i4) rems : map(lambda([z], mod(x, z)), mods); (%o4) [4, 568, 54, 624] (%i5) chinese(rems, mods); (%o5) 685124877004 (%i6) chinese([1, 2], [3, n]); (%o6) chinese([1, 2], [3, n]) (%i7) %, n = 4; (%o7) 10
Computes a continued fraction approximation.
expr is an expression comprising continued fractions,
square roots of integers, and literal real numbers
(integers, rational numbers, ordinary floats, and bigfloats).
cf
computes exact expansions for rational numbers,
but expansions are truncated at ratepsilon
for ordinary floats
and 10^(-fpprec)
for bigfloats.
Operands in the expression may be combined with arithmetic operators.
Maxima does not know about operations on continued fractions
outside of cf
.
cf
evaluates its arguments after binding listarith
to
false
. cf
returns a continued fraction, represented as a list.
A continued fraction a + 1/(b + 1/(c + ...))
is represented by the list
[a, b, c, ...]
. The list elements a
, b
, c
, …
must evaluate to integers. expr may also contain sqrt (n)
where
n
is an integer. In this case cf
will give as many terms of the
continued fraction as the value of the variable cflength
times the
period.
A continued fraction can be evaluated to a number by evaluating the arithmetic
representation returned by cfdisrep
. See also cfexpand
for
another way to evaluate a continued fraction.
See also cfdisrep
, cfexpand
, and cflength
.
Examples:
(%i1) cf ([5, 3, 1]*[11, 9, 7] + [3, 7]/[4, 3, 2]); (%o1) [59, 17, 2, 1, 1, 1, 27] (%i2) cf ((3/17)*[1, -2, 5]/sqrt(11) + (8/13)); (%o2) [0, 1, 1, 1, 3, 2, 1, 4, 1, 9, 1, 9, 2]
cflength
controls how many periods of the continued fraction
are computed for algebraic, irrational numbers.
(%i1) cflength: 1$ (%i2) cf ((1 + sqrt(5))/2); (%o2) [1, 1, 1, 1, 2] (%i3) cflength: 2$ (%i4) cf ((1 + sqrt(5))/2); (%o4) [1, 1, 1, 1, 1, 1, 1, 2] (%i5) cflength: 3$ (%i6) cf ((1 + sqrt(5))/2); (%o6) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]
cfdisrep
.
(%i1) cflength: 3$ (%i2) cfdisrep (cf (sqrt (3)))$ (%i3) ev (%, numer); (%o3) 1.731707317073171
cf
.
(%i1) cf ([1,1,1,1,1,2] * 3); (%o1) [4, 1, 5, 2] (%i2) cf ([1,1,1,1,1,2]) * 3; (%o2) [3, 3, 3, 3, 3, 6]
Constructs and returns an ordinary arithmetic expression
of the form a + 1/(b + 1/(c + ...))
from the list representation of a continued fraction [a, b, c, ...]
.
(%i1) cf ([1, 2, -3] + [1, -2, 1]); (%o1) [1, 1, 1, 2] (%i2) cfdisrep (%); 1 (%o2) 1 + --------- 1 1 + ----- 1 1 + - 2
Returns a matrix of the numerators and denominators of the last (column 1) and next-to-last (column 2) convergents of the continued fraction x.
(%i1) cf (rat (ev (%pi, numer))); `rat' replaced 3.141592653589793 by 103993/33102 =3.141592653011902 (%o1) [3, 7, 15, 1, 292] (%i2) cfexpand (%); [ 103993 355 ] (%o2) [ ] [ 33102 113 ] (%i3) %[1,1]/%[2,1], numer; (%o3) 3.141592653011902
Default value: 1
cflength
controls the number of terms of the continued fraction the
function cf
will give, as the value cflength
times the period.
Thus the default is to give one period.
(%i1) cflength: 1$ (%i2) cf ((1 + sqrt(5))/2); (%o2) [1, 1, 1, 1, 2] (%i3) cflength: 2$ (%i4) cf ((1 + sqrt(5))/2); (%o4) [1, 1, 1, 1, 1, 1, 1, 2] (%i5) cflength: 3$ (%i6) cf ((1 + sqrt(5))/2); (%o6) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]
divsum (n, k)
returns the sum of the divisors of n
raised to the k’th power.
divsum (n)
returns the sum of the divisors of n.
(%i1) divsum (12); (%o1) 28 (%i2) 1 + 2 + 3 + 4 + 6 + 12; (%o2) 28 (%i3) divsum (12, 2); (%o3) 210 (%i4) 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 12^2; (%o4) 210
Returns the n’th Euler number for nonnegative integer n.
Euler numbers equal to zero are suppressed if zerobern
is
false
.
For the Euler-Mascheroni constant, see %gamma
.
(%i1) zerobern: true$ (%i2) map (euler, [0, 1, 2, 3, 4, 5, 6]); (%o2) [1, 0, - 1, 0, 5, 0, - 61] (%i3) zerobern: false$ (%i4) map (euler, [0, 1, 2, 3, 4, 5, 6]); (%o4) [1, - 1, 5, - 61, 1385, - 50521, 2702765]
Default value: false
Controls the value returned by ifactors
. The default false
causes ifactors
to provide information about multiplicities of the
computed prime factors. If factors_only
is set to true
,
ifactors
returns nothing more than a list of prime factors.
Example: See ifactors
.
Returns the n’th Fibonacci number.
fib(0)
is equal to 0 and fib(1)
equal to 1, and
fib (-n)
equal to (-1)^(n + 1) * fib(n)
.
(%i1) map (fib, [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]); (%o1) [- 3, 2, - 1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21]
Expresses Fibonacci numbers in expr in terms of the constant %phi
,
which is (1 + sqrt(5))/2
, approximately 1.61803399.
Examples:
(%i1) fibtophi (fib (n)); n n %phi - (1 - %phi) (%o1) ------------------- 2 %phi - 1 (%i2) fib (n-1) + fib (n) - fib (n+1); (%o2) - fib(n + 1) + fib(n) + fib(n - 1) (%i3) fibtophi (%); n + 1 n + 1 n n %phi - (1 - %phi) %phi - (1 - %phi) (%o3) - --------------------------- + ------------------- 2 %phi - 1 2 %phi - 1 n - 1 n - 1 %phi - (1 - %phi) + --------------------------- 2 %phi - 1 (%i4) ratsimp (%); (%o4) 0
For a positive integer n returns the factorization of n. If
n=p1^e1..pk^nk
is the decomposition of n into prime
factors, ifactors returns [[p1, e1], ... , [pk, ek]]
.
Factorization methods used are trial divisions by primes up to 9973, Pollard’s rho and p-1 method and elliptic curves.
If the variable ifactor_verbose
is set to true
ifactor produces detailed output about what it is doing including
immediate feedback as soon as a factor has been found.
The value returned by ifactors
is controlled by the option variable factors_only
.
The default false
causes ifactors
to provide information about
the multiplicities of the computed prime factors. If factors_only
is set to true
, ifactors
simply returns the list of
prime factors.
(%i1) ifactors(51575319651600); (%o1) [[2, 4], [3, 2], [5, 2], [1583, 1], [9050207, 1]] (%i2) apply("*", map(lambda([u], u[1]^u[2]), %)); (%o2) 51575319651600 (%i3) ifactors(51575319651600), factors_only : true; (%o3) [2, 3, 5, 1583, 9050207]
Returns a list [a, b, u]
where u is the greatest
common divisor of n and k, and u is equal to
a n + b k
. The arguments n and k
must be integers.
igcdex
implements the Euclidean algorithm. See also gcdex
.
The command load("gcdex")
loads the function.
Examples:
(%i1) load("gcdex")$ (%i2) igcdex(30,18); (%o2) [- 1, 2, 6] (%i3) igcdex(1526757668, 7835626735736); (%o3) [845922341123, - 164826435, 4] (%i4) igcdex(fib(20), fib(21)); (%o4) [4181, - 2584, 1]
Returns the integer n’th root of the absolute value of x.
(%i1) l: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$ (%i2) map (lambda ([a], inrt (10^a, 3)), l); (%o2) [2, 4, 10, 21, 46, 100, 215, 464, 1000, 2154, 4641, 10000]
Computes the inverse of n modulo m.
inv_mod (n,m)
returns false
,
if n is a zero divisor modulo m.
(%i1) inv_mod(3, 41); (%o1) 14 (%i2) ratsimp(3^-1), modulus = 41; (%o2) 14 (%i3) inv_mod(3, 42); (%o3) false
Returns the "integer square root" of the absolute value of x, which is an integer.
Returns the Jacobi symbol of p and q.
(%i1) l: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$ (%i2) map (lambda ([a], jacobi (a, 9)), l); (%o2) [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0]
Returns the least common multiple of its arguments. The arguments may be general expressions as well as integers.
load ("functs")
loads this function.
Returns the n’th Lucas number.
lucas(0)
is equal to 2 and lucas(1)
equal to 1, and
in general, lucas(n) = lucas(n-1) + lucas(n-2)
. Also
lucas(-n)
is equal to (-1)^(-n) * lucas(n)
.
(%i1) map (lucas, [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]); (%o1) [7, - 4, 3, - 1, 2, 1, 3, 4, 7, 11, 18, 29, 47]
If x and y are real numbers and y is nonzero, return
x - y * floor(x / y)
. Further for all real
x, we have mod (x, 0) = x
. For a discussion of the
definition mod (x, 0) = x
, see Section 3.4, of
"Concrete Mathematics," by Graham, Knuth, and Patashnik. The function
mod (x, 1)
is a sawtooth function with period 1 with
mod (1, 1) = 0
and mod (0, 1) = 0
.
To find the principal argument (a number in the interval (-%pi, %pi]
) of
a complex number, use the function
x |-> %pi - mod (%pi - x, 2*%pi)
, where x is an
argument.
When x and y are constant expressions (10 * %pi
, for
example), mod
uses the same big float evaluation scheme that floor
and ceiling
uses. Again, it’s possible, although unlikely, that
mod
could return an erroneous value in such cases.
For nonnumerical arguments x or y, mod
knows several
simplification rules:
(%i1) mod (x, 0); (%o1) x (%i2) mod (a*x, a*y); (%o2) a mod(x, y) (%i3) mod (0, x); (%o3) 0
Returns the smallest prime bigger than n.
(%i1) next_prime(27); (%o1) 29
Expands the expression expr in partial fractions
with respect to the main variable var. partfrac
does a complete
partial fraction decomposition. The algorithm employed is based on
the fact that the denominators of the partial fraction expansion (the
factors of the original denominator) are relatively prime. The
numerators can be written as linear combinations of denominators, and
the expansion falls out.
partfrac
ignores the value true
of the option variable
keepfloat
.
(%i1) 1/(1+x)^2 - 2/(1+x) + 2/(2+x); 2 2 1 (%o1) ----- - ----- + -------- x + 2 x + 1 2 (x + 1) (%i2) ratsimp (%); x (%o2) - ------------------- 3 2 x + 4 x + 5 x + 2 (%i3) partfrac (%, x); 2 2 1 (%o3) ----- - ----- + -------- x + 2 x + 1 2 (x + 1)
Uses a modular algorithm to compute a^n mod m
where a and n are integers and m is a positive integer.
If n is negative, inv_mod
is used to find the modular inverse.
(%i1) power_mod(3, 15, 5); (%o1) 2 (%i2) mod(3^15,5); (%o2) 2 (%i3) power_mod(2, -1, 5); (%o3) 3 (%i4) inv_mod(2,5); (%o4) 3
Primality test. If primep (n)
returns false
, n is a
composite number and if it returns true
, n is a prime number
with very high probability.
For n less than 341550071728321 a deterministic version of
Miller-Rabin’s test is used. If primep (n)
returns
true
, then n is a prime number.
For n bigger than 341550071728321 primep
uses
primep_number_of_tests
Miller-Rabin’s pseudo-primality tests and one
Lucas pseudo-primality test. The probability that a non-prime n will
pass one Miller-Rabin test is less than 1/4. Using the default value 25 for
primep_number_of_tests
, the probability of n being
composite is much smaller that 10^-15.
Default value: 25
Number of Miller-Rabin’s tests used in primep
.
Returns the list of all primes from start to end.
(%i1) primes(3, 7); (%o1) [3, 5, 7]
Returns the greatest prime smaller than n.
(%i1) prev_prime(27); (%o1) 23
Returns the principal unit of the real quadratic number field
sqrt (n)
where n is an integer,
i.e., the element whose norm is unity.
This amounts to solving Pell’s equation a^2 - n b^2 = 1
.
(%i1) qunit (17); (%o1) sqrt(17) + 4 (%i2) expand (% * (sqrt(17) - 4)); (%o2) 1
Returns the number of integers less than or equal to n which are relatively prime to n.
Default value: true
When zerobern
is false
, bern
excludes the Bernoulli numbers
and euler
excludes the Euler numbers which are equal to zero.
See bern
and euler
.
Returns the Riemann zeta function. If n is a negative integer, 0, or a
positive even integer, the Riemann zeta function simplifies to an exact value.
For a positive even integer the option variable zeta%pi
has to be
true
in addition (See zeta%pi
). For a floating point or bigfloat
number the Riemann zeta function is evaluated numerically. Maxima returns a
noun form zeta (n)
for all other arguments, including rational
noninteger, and complex arguments, or for even integers, if zeta%pi
has
the value false
.
zeta(1)
is undefined, but Maxima knows the limit
limit(zeta(x), x, 1)
from above and below.
The Riemann zeta function distributes over lists, matrices, and equations.
Examples:
(%i1) zeta([-2, -1, 0, 0.5, 2, 3, 1+%i]); 2 1 1 %pi (%o1) [0, - --, - -, - 1.460354508809586, ----, zeta(3), 12 2 6 zeta(%i + 1)] (%i2) limit(zeta(x),x,1,plus); (%o2) inf (%i3) limit(zeta(x),x,1,minus); (%o3) minf
Default value: true
When zeta%pi
is true
, zeta
returns an expression
proportional to %pi^n
for even integer n
. Otherwise, zeta
returns a noun form zeta (n)
for even integer n
.
Examples:
(%i1) zeta%pi: true$ (%i2) zeta (4); 4 %pi (%o2) ---- 90 (%i3) zeta%pi: false$ (%i4) zeta (4); (%o4) zeta(4)
Shows an addition table of all elements in (Z/nZ).
See also zn_mult_table
, zn_power_table
.
Returns a list containing the characteristic factors of the totient of n.
Using the characteristic factors a multiplication group modulo n can be expressed as a group direct product of cyclic subgroups.
In case the group itself is cyclic the list only contains the totient
and using zn_primroot
a generator can be computed.
If the totient splits into more than one characteristic factors
zn_factor_generators
finds generators of the corresponding subgroups.
Each of the r
factors in the list divides the right following factors.
For the last factor f_r
therefore holds a^f_r = 1 (mod n)
for all a
coprime to n.
This factor is also known as Carmichael function or Carmichael lambda.
If n > 2
, then totient(n)/2^r
is the number of quadratic residues,
and each of these has 2^r
square roots.
See also totient
, zn_primroot
, zn_factor_generators
.
Examples:
The multiplication group modulo 14
is cyclic and its 6
elements
can be generated by a primitive root.
(%i1) [zn_characteristic_factors(14), phi: totient(14)]; (%o1) [[6], 6] (%i2) [zn_factor_generators(14), g: zn_primroot(14)]; (%o2) [[3], 3] (%i3) M14: makelist(power_mod(g,i,14), i,0,phi-1); (%o3) [1, 3, 9, 13, 11, 5]
The multiplication group modulo 15
is not cyclic and its 8
elements
can be generated by two factor generators.
(%i1) [[f1,f2]: zn_characteristic_factors(15), totient(15)]; (%o1) [[2, 4], 8] (%i2) [[g1,g2]: zn_factor_generators(15), zn_primroot(15)]; (%o2) [[11, 7], false] (%i3) UG1: makelist(power_mod(g1,i,15), i,0,f1-1); (%o3) [1, 11] (%i4) UG2: makelist(power_mod(g2,i,15), i,0,f2-1); (%o4) [1, 7, 4, 13] (%i5) M15: create_list(mod(i*j,15), i,UG1, j,UG2); (%o5) [1, 7, 4, 13, 11, 2, 14, 8]
For the last characteristic factor 4
it holds that a^4 = 1 (mod 15)
for all a
in M15
.
M15
has two characteristic factors and therefore 8/2^2
quadratic residues,
and each of these has 2^2
square roots.
(%i6) zn_power_table(15); [ 1 1 1 1 ] [ ] [ 2 4 8 1 ] [ ] [ 4 1 4 1 ] [ ] [ 7 4 13 1 ] (%o6) [ ] [ 8 4 2 1 ] [ ] [ 11 1 11 1 ] [ ] [ 13 4 7 1 ] [ ] [ 14 1 14 1 ] (%i7) map(lambda([i], zn_nth_root(i,2,15)), [1,4]); (%o7) [[1, 4, 11, 14], [2, 7, 8, 13]]
Returns 1
if n is 1
and otherwise
the greatest characteristic factor of the totient of n.
For remarks and examples see zn_characteristic_factors
.
Uses the technique of LU-decomposition to compute the determinant of matrix over (Z/pZ). p must be a prime.
However if the determinant is equal to zero the LU-decomposition might fail.
In that case zn_determinant
computes the determinant non-modular
and reduces thereafter.
See also zn_invert_by_lu
.
Examples:
(%i1) m : matrix([1,3],[2,4]); [ 1 3 ] (%o1) [ ] [ 2 4 ] (%i2) zn_determinant(m, 5); (%o2) 3 (%i3) m : matrix([2,4,1],[3,1,4],[4,3,2]); [ 2 4 1 ] [ ] (%o3) [ 3 1 4 ] [ ] [ 4 3 2 ] (%i4) zn_determinant(m, 5); (%o4) 0
Returns a list containing factor generators corresponding to the characteristic factors of the totient of n.
For remarks and examples see zn_characteristic_factors
.
Uses the technique of LU-decomposition to compute the modular inverse of
matrix over (Z/pZ). p must be a prime and matrix
invertible. zn_invert_by_lu
returns false
if matrix
is not invertible.
See also zn_determinant
.
Example:
(%i1) m : matrix([1,3],[2,4]); [ 1 3 ] (%o1) [ ] [ 2 4 ] (%i2) zn_determinant(m, 5); (%o2) 3 (%i3) mi : zn_invert_by_lu(m, 5); [ 3 4 ] (%o3) [ ] [ 1 2 ] (%i4) matrixmap(lambda([a], mod(a, 5)), m . mi); [ 1 0 ] (%o4) [ ] [ 0 1 ]
Computes the discrete logarithm. Let (Z/nZ)* be a cyclic group, g a
primitive root modulo n or a generator of a subgroup of (Z/nZ)*
and let a be a member of this group.
zn_log (a, g, n)
then solves the congruence g^x = a mod n
.
Please note that if a is not a power of g modulo n,
zn_log
will not terminate.
The applied algorithm needs a prime factorization of zn_order(g)
resp. totient(n)
in case g is a primitive root modulo n.
A precomputed list of factors of zn_order(g)
might be used as the optional fourth argument.
This list must be of the same form as the list returned by ifactors(zn_order(g))
using the default option factors_only : false
.
However, compared to the running time of the logarithm algorithm
providing the list of factors has only a quite small effect.
The algorithm uses a Pohlig-Hellman-reduction and Pollard’s Rho-method for
discrete logarithms. The running time of zn_log
primarily depends on the
bitlength of the greatest prime factor of zn_order(g)
.
See also zn_primroot
, zn_order
, ifactors
, totient
.
Examples:
zn_log (a, g, n)
solves the congruence g^x = a mod n
.
(%i1) n : 22$ (%i2) g : zn_primroot(n); (%o2) 7 (%i3) ord_7 : zn_order(7, n); (%o3) 10 (%i4) powers_7 : makelist(power_mod(g, x, n), x, 0, ord_7 - 1); (%o4) [1, 7, 5, 13, 3, 21, 15, 17, 9, 19] (%i5) zn_log(9, g, n); (%o5) 8 (%i6) map(lambda([x], zn_log(x, g, n)), powers_7); (%o6) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (%i7) ord_5 : zn_order(5, n); (%o7) 5 (%i8) powers_5 : makelist(power_mod(5,x,n), x, 0, ord_5 - 1); (%o8) [1, 5, 3, 15, 9] (%i9) zn_log(9, 5, n); (%o9) 4
The optional fourth argument must be of the same form as the list returned by
ifactors(zn_order(g))
.
The running time primarily depends on the bitlength of the totient’s greatest prime factor.
(%i1) (p : 2^127-1, primep(p)); (%o1) true (%i2) ifs : ifactors(p - 1)$ (%i3) g : zn_primroot(p, ifs); (%o3) 43 (%i4) a : power_mod(g, 4711, p)$ (%i5) zn_log(a, g, p, ifs); (%o5) 4711 (%i6) f_max : last(ifs); (%o6) [77158673929, 1] (%i7) ord_5 : zn_order(5,p,ifs)$ (%i8) (p - 1)/ord_5; (%o8) 73 (%i9) ifs_5 : ifactors(ord_5)$ (%i10) a : power_mod(5, 4711, p)$ (%i11) zn_log(a, 5, p, ifs_5); (%o11) 4711
Without the optional argument gcd zn_mult_table(n)
shows a
multiplication table of all elements in (Z/nZ)* which are all elements
coprime to n.
The optional second argument gcd allows to select a specific
subset of (Z/nZ). If gcd is an integer, a multiplication table of
all residues x
with gcd(x,n) =
gcd are returned.
Additionally row and column headings are added for better readability.
If necessary, these can be easily removed by submatrix(1, table, 1)
.
If gcd is set to all
, the table is printed for all non-zero
elements in (Z/nZ).
The second example shows an alternative way to create a multiplication table for subgroups.
See also zn_add_table
, zn_power_table
.
Examples:
The default table shows all elements in (Z/nZ)* and allows to demonstrate and study basic properties of modular multiplication groups. E.g. the principal diagonal contains all quadratic residues, each row and column contains every element, the tables are symmetric, etc..
If gcd is set to all
, the table is printed for all non-zero
elements in (Z/nZ).
(%i1) zn_mult_table(8); [ 1 3 5 7 ] [ ] [ 3 1 7 5 ] (%o1) [ ] [ 5 7 1 3 ] [ ] [ 7 5 3 1 ] (%i2) zn_mult_table(8, all); [ 1 2 3 4 5 6 7 ] [ ] [ 2 4 6 0 2 4 6 ] [ ] [ 3 6 1 4 7 2 5 ] [ ] (%o2) [ 4 0 4 0 4 0 4 ] [ ] [ 5 2 7 4 1 6 3 ] [ ] [ 6 4 2 0 6 4 2 ] [ ] [ 7 6 5 4 3 2 1 ]
If gcd is an integer, row and column headings are added for better readability.
If the subset chosen by gcd is a group there is another way to create
a multiplication table. An isomorphic mapping from a group with 1
as
identity builds a table which is easy to read. The mapping is accomplished via CRT.
In the second version of T36_4
the identity, here 28
, is placed in
the top left corner, just like in table T9
.
(%i1) T36_4: zn_mult_table(36,4); [ * 4 8 16 20 28 32 ] [ ] [ 4 16 32 28 8 4 20 ] [ ] [ 8 32 28 20 16 8 4 ] [ ] (%o1) [ 16 28 20 4 32 16 8 ] [ ] [ 20 8 16 32 4 20 28 ] [ ] [ 28 4 8 16 20 28 32 ] [ ] [ 32 20 4 8 28 32 16 ] (%i2) T9: zn_mult_table(36/4); [ 1 2 4 5 7 8 ] [ ] [ 2 4 8 1 5 7 ] [ ] [ 4 8 7 2 1 5 ] (%o2) [ ] [ 5 1 2 7 8 4 ] [ ] [ 7 5 1 8 4 2 ] [ ] [ 8 7 5 4 2 1 ] (%i3) T36_4: matrixmap(lambda([x], chinese([0,x],[4,9])), T9); [ 28 20 4 32 16 8 ] [ ] [ 20 4 8 28 32 16 ] [ ] [ 4 8 16 20 28 32 ] (%o3) [ ] [ 32 28 20 16 8 4 ] [ ] [ 16 32 28 8 4 20 ] [ ] [ 8 16 32 4 20 28 ]
Returns a list with all n-th roots of x from the multiplication
subgroup of (Z/mZ) which contains x, or false
, if x
is no n-th power modulo m or not contained in any multiplication
subgroup of (Z/mZ).
x is an element of a multiplication subgroup modulo m, if the
greatest common divisor g = gcd(x,m)
is coprime to m/g
.
zn_nth_root
is based on an algorithm by Adleman, Manders and Miller
and on theorems about modulo multiplication groups by Daniel Shanks.
The algorithm needs a prime factorization of the modulus m.
So in case the factorization of m is known, the list of factors
can be passed as the fourth argument. This optional argument
must be of the same form as the list returned by ifactors(m)
using the default option factors_only: false
.
Examples:
A power table of the multiplication group modulo 14
followed by a list of lists containing all n-th roots of 1
with n from 1
to 6
.
(%i1) zn_power_table(14); [ 1 1 1 1 1 1 ] [ ] [ 3 9 13 11 5 1 ] [ ] [ 5 11 13 9 3 1 ] (%o1) [ ] [ 9 11 1 9 11 1 ] [ ] [ 11 9 1 11 9 1 ] [ ] [ 13 1 13 1 13 1 ] (%i2) makelist(zn_nth_root(1,n,14), n,1,6); (%o2) [[1], [1, 13], [1, 9, 11], [1, 13], [1], [1, 3, 5, 9, 11, 13]]
In the following example x is not coprime to m, but is a member of a multiplication subgroup of (Z/mZ) and any n-th root is a member of the same subgroup.
The residue class 3
is no member of any multiplication subgroup of (Z/63Z)
and is therefore not returned as a third root of 27
.
Here zn_power_table
shows all residues x
in (Z/63Z)
with gcd(x,63) = 9
. This subgroup is isomorphic to (Z/7Z)*
and its identity 36
is computed via CRT.
(%i1) m: 7*9$ (%i2) zn_power_table(m,9); [ 9 18 36 9 18 36 ] [ ] [ 18 9 36 18 9 36 ] [ ] [ 27 36 27 36 27 36 ] (%o2) [ ] [ 36 36 36 36 36 36 ] [ ] [ 45 9 27 18 54 36 ] [ ] [ 54 18 27 9 45 36 ] (%i3) zn_nth_root(27,3,m); (%o3) [27, 45, 54] (%i4) id7:1$ id63_9: chinese([id7,0],[7,9]); (%o5) 36
In the following RSA-like example, where the modulus N
is squarefree,
i.e. it splits into
exclusively first power factors, every x
from 0
to N-1
is contained in a multiplication subgroup.
The process of decryption needs the e
-th root.
e
is coprime to totient(N)
and therefore the e
-th root is unique.
In this case zn_nth_root
effectively performs CRT-RSA.
(Please note that flatten
removes braces but no solutions.)
(%i1) [p,q,e]: [5,7,17]$ N: p*q$ (%i3) xs: makelist(x,x,0,N-1)$ (%i4) ys: map(lambda([x],power_mod(x,e,N)),xs)$ (%i5) zs: flatten(map(lambda([y], zn_nth_root(y,e,N)), ys))$ (%i6) is(zs = xs); (%o6) true
In the following example the factorization of the modulus is known and passed as the fourth argument.
(%i1) p: 2^107-1$ q: 2^127-1$ N: p*q$ (%i4) ibase: obase: 16$ (%i5) msg: 11223344556677889900aabbccddeeff$ (%i6) enc: power_mod(msg, 10001, N); (%o6) 1a8db7892ae588bdc2be25dd5107a425001fe9c82161abc673241c8b383 (%i7) zn_nth_root(enc, 10001, N, [[p,1],[q,1]]); (%o7) [11223344556677889900aabbccddeeff]
Returns the order of x if it is a unit of the finite group (Z/nZ)*
or returns false
. x is a unit modulo n if it is coprime to n.
The applied algorithm needs a prime factorization of totient(n)
. This factorization
might be time consuming in some cases and it can be useful to factor first
and then to pass the list of factors to zn_log
as the third argument.
The list must be of the same form as the list returned by ifactors(totient(n))
using the default option factors_only : false
.
See also zn_primroot
, ifactors
, totient
.
Examples:
zn_order
computes the order of the unit x in (Z/nZ)*.
(%i1) n: 22$ (%i2) g: zn_primroot(n); (%o2) 7 (%i3) units_22: sublist(makelist(i,i,1,21), lambda([x], gcd(x,n)=1)); (%o3) [1, 3, 5, 7, 9, 13, 15, 17, 19, 21] (%i4) (ord_7: zn_order(7, n)) = totient(n); (%o4) 10 = 10 (%i5) powers_7: makelist(power_mod(g,i,n), i,0,ord_7 - 1); (%o5) [1, 7, 5, 13, 3, 21, 15, 17, 9, 19] (%i6) map(lambda([x], zn_order(x, n)), powers_7); (%o6) [1, 10, 5, 10, 5, 2, 5, 10, 5, 10] (%i7) map(lambda([x], ord_7/gcd(x,ord_7)), makelist(i,i,0,ord_7-1)); (%o7) [1, 10, 5, 10, 5, 2, 5, 10, 5, 10] (%i8) totient(totient(n)); (%o8) 4
The optional third argument must be of the same form as the list returned by
ifactors(totient(n))
.
(%i1) (p : 2^142 + 217, primep(p)); (%o1) true (%i2) ifs: ifactors( totient(p) )$ (%i3) g: zn_primroot(p, ifs); (%o3) 3 (%i4) is( (ord_3 : zn_order(g, p, ifs)) = totient(p) ); (%o4) true (%i5) map(lambda([x], ord_3/zn_order(x,p,ifs)), makelist(i,i,2,15)); (%o5) [22, 1, 44, 10, 5, 2, 22, 2, 8, 2, 1, 1, 20, 1]
Without any optional argument zn_power_table(n)
shows a power table of all elements in (Z/nZ)*
which are all residue classes coprime to n.
The exponent loops from 1
to the greatest characteristic factor of
totient(n)
(also known as Carmichael function or Carmichael lambda)
and the table ends with a column of ones on the right side.
The optional second argument gcd allows to select powers of a specific
subset of (Z/nZ). If gcd is an integer, powers of all residue
classes x
with gcd(x,n) =
gcd are returned,
i.e. the default value for gcd is 1
.
If gcd is set to all
, the table contains powers of all elements
in (Z/nZ).
If the optional third argument max_exp is given, the exponent loops from
1
to max_exp.
See also zn_add_table
, zn_mult_table
.
Examples:
The default which is gcd = 1
allows to demonstrate and study basic
theorems of e.g. Fermat and Euler.
The argument gcd allows to select subsets of (Z/nZ) and to study
multiplication subgroups and isomorphisms.
E.g. the groups G10
and G10_2
are under multiplication both
isomorphic to G5
. 1
is the identity in G5
.
So are 1
resp. 6
the identities in G10
resp. G10_2
.
There are corresponding mappings for primitive roots, n-th roots, etc..
(%i1) zn_power_table(10); [ 1 1 1 1 ] [ ] [ 3 9 7 1 ] (%o1) [ ] [ 7 9 3 1 ] [ ] [ 9 1 9 1 ] (%i2) zn_power_table(10,2); [ 2 4 8 6 ] [ ] [ 4 6 4 6 ] (%o2) [ ] [ 6 6 6 6 ] [ ] [ 8 4 2 6 ] (%i3) zn_power_table(10,5); (%o3) [ 5 5 5 5 ] (%i4) zn_power_table(10,10); (%o4) [ 0 0 0 0 ] (%i5) G5: [1,2,3,4]; (%o6) [1, 2, 3, 4] (%i6) G10_2: map(lambda([x], chinese([0,x],[2,5])), G5); (%o6) [6, 2, 8, 4] (%i7) G10: map(lambda([x], power_mod(3, zn_log(x,2,5), 10)), G5); (%o7) [1, 3, 7, 9]
If gcd is set to all
, the table contains powers of all elements
in (Z/nZ).
The third argument max_exp allows to set the highest exponent. The following table shows a very small example of RSA.
(%i1) N:2*5$ phi:totient(N)$ e:7$ d:inv_mod(e,phi)$ (%i5) zn_power_table(N, all, e*d); [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ ] [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] [ ] [ 2 4 8 6 2 4 8 6 2 4 8 6 2 4 8 6 2 4 8 6 2 ] [ ] [ 3 9 7 1 3 9 7 1 3 9 7 1 3 9 7 1 3 9 7 1 3 ] [ ] [ 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 ] (%o5) [ ] [ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ] [ ] [ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 ] [ ] [ 7 9 3 1 7 9 3 1 7 9 3 1 7 9 3 1 7 9 3 1 7 ] [ ] [ 8 4 2 6 8 4 2 6 8 4 2 6 8 4 2 6 8 4 2 6 8 ] [ ] [ 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 ]
If the multiplicative group (Z/nZ)* is cyclic, zn_primroot
computes the
smallest primitive root modulo n. (Z/nZ)* is cyclic if n is equal to
2
, 4
, p^k
or 2*p^k
, where p
is prime and
greater than 2
and k
is a natural number. zn_primroot
performs an according pretest if the option variable zn_primroot_pretest
(default: false
) is set to true
. In any case the computation is limited
by the upper bound zn_primroot_limit
.
If (Z/nZ)* is not cyclic or if there is no primitive root up to
zn_primroot_limit
, zn_primroot
returns false
.
The applied algorithm needs a prime factorization of totient(n)
. This factorization
might be time consuming in some cases and it can be useful to factor first
and then to pass the list of factors to zn_log
as an additional argument.
The list must be of the same form as the list returned by ifactors(totient(n))
using the default option factors_only : false
.
See also zn_primroot_p
, zn_order
, ifactors
, totient
.
Examples:
zn_primroot
computes the smallest primitive root modulo n or returns
false
.
(%i1) n : 14$ (%i2) g : zn_primroot(n); (%o2) 3 (%i3) zn_order(g, n) = totient(n); (%o3) 6 = 6 (%i4) n : 15$ (%i5) zn_primroot(n); (%o5) false
The optional second argument must be of the same form as the list returned by
ifactors(totient(n))
.
(%i1) (p : 2^142 + 217, primep(p)); (%o1) true (%i2) ifs : ifactors( totient(p) )$ (%i3) g : zn_primroot(p, ifs); (%o3) 3 (%i4) [time(%o2), time(%o3)]; (%o4) [[15.556972], [0.004]] (%i5) is(zn_order(g, p, ifs) = p - 1); (%o5) true (%i6) n : 2^142 + 216$ (%i7) ifs : ifactors(totient(n))$ (%i8) zn_primroot(n, ifs), zn_primroot_limit : 200, zn_primroot_verbose : true; `zn_primroot' stopped at zn_primroot_limit = 200 (%o8) false
Default value: 1000
If zn_primroot
cannot find a primitive root, it stops at this upper bound.
If the option variable zn_primroot_verbose
(default: false
) is
set to true
, a message will be printed when zn_primroot_limit
is reached.
Checks whether x is a primitive root in the multiplicative group (Z/nZ)*.
The applied algorithm needs a prime factorization of totient(n)
. This factorization
might be time consuming and in case zn_primroot_p
will be consecutively
applied to a list of candidates it can be useful to factor first and then to
pass the list of factors to zn_log
as a third argument.
The list must be of the same form as the list returned by ifactors(totient(n))
using the default option factors_only : false
.
See also zn_primroot
, zn_order
, ifactors
, totient
.
Examples:
zn_primroot_p
as a predicate function.
(%i1) n : 14$ (%i2) units_14 : sublist(makelist(i,i,1,13), lambda([i], gcd(i, n) = 1)); (%o2) [1, 3, 5, 9, 11, 13] (%i3) zn_primroot_p(13, n); (%o3) false (%i4) sublist(units_14, lambda([x], zn_primroot_p(x, n))); (%o4) [3, 5] (%i5) map(lambda([x], zn_order(x, n)), units_14); (%o5) [1, 6, 6, 3, 3, 2]
The optional third argument must be of the same form as the list returned by
ifactors(totient(n))
.
(%i1) (p: 2^142 + 217, primep(p)); (%o1) true (%i2) ifs: ifactors( totient(p) )$ (%i3) sublist(makelist(i,i,1,50), lambda([x], zn_primroot_p(x,p,ifs))); (%o3) [3, 12, 13, 15, 21, 24, 26, 27, 29, 33, 38, 42, 48] (%i4) [time(%o2), time(%o3)]; (%o4) [[7.748484], [0.036002]]
Default value: false
The multiplicative group (Z/nZ)* is cyclic if n is equal to
2
, 4
, p^k
or 2*p^k
, where p
is prime and
greater than 2
and k
is a natural number.
zn_primroot_pretest
controls whether zn_primroot
will check
if one of these cases occur before it computes the smallest primitive root.
Only if zn_primroot_pretest
is set to true
this pretest will be
performed.
Default value: false
Controls whether zn_primroot
prints a message when reaching
zn_primroot_limit
.
Previous: Number Theory, Up: Number Theory [Contents][Index]