Previous: Introduction to wrstcse, Up: wrstcse [Contents][Index]
Returns what happens if all tolerances (that are represented by tol [n] that can vary from 0 to 1) happen to be 0.
Example:
(%i1) load("wrstcse")$
(%i2) vals: [ R_1= 1000.0*(1+tol[1]*.01), R_2= 2000.0*(1+tol[2]*.01) ]; (%o2) [R_1 = 1000.0 (0.01 tol + 1), 1 R_2 = 2000.0 (0.01 tol + 1)] 2
(%i3) divider:U_Out=U_In*R_1/(R_1+R_2); R_1 U_In (%o3) U_Out = --------- R_2 + R_1
(%i4) wc_typicalvalues(vals); (%o4) [R_1 = 1000.0, R_2 = 2000.0]
(%i5) wc_typicalvalues(subst(vals,divider)); (%o5) U_Out = 0.3333333333333333 U_In
Convenience function: Displays a list which parameter can vary between which values.
Example:
(%i1) load("wrstcse")$
(%i2) vals: [ R_1= 1000.0*(1+tol[1]*.01), R_2= 2000.0*(1+tol[2]*.01) ]; (%o2) [R_1 = 1000.0 (0.01 tol + 1), 1 R_2 = 2000.0 (0.01 tol + 1)] 2
(%i3) wc_inputvalueranges(vals); [ R_1 min = 990.0 typ = 1000.0 max = 1010.0 ] (%o3) [ ] [ R_2 min = 1980.0 typ = 2000.0 max = 2020.0 ]
Systematically introduces num values per parameter into expression and returns a list of the result. If no num is given, num defaults to 3.
See also wc_montecarlo
.
Example:
(%i1) load("wrstcse")$
(%i2) vals: [ R_1= 1000.0*(1+tol[1]*.01), R_2= 2000.0*(1+tol[2]*.01) ]; (%o2) [R_1 = 1000.0 (0.01 tol + 1), 1 R_2 = 2000.0 (0.01 tol + 1)] 2
(%i3) divider: U_Out=U_In*(R_1)/(R_1+R_2); R_1 U_In (%o3) U_Out = --------- R_2 + R_1
(%i4) wc_systematic(subst(vals,rhs(divider))); (%o4) [0.3333333333333334 U_In, 0.3311036789297659 U_In, 0.3289036544850498 U_In, 0.3355704697986577 U_In, 0.3333333333333333 U_In, 0.3311258278145696 U_In, 0.3377926421404682 U_In, 0.3355481727574751 U_In, 0.3333333333333333 U_In]
Introduces num random values per parameter into expression and returns a list of the result.
See also wc_systematic
.
Example:
(%i1) load("wrstcse")$
(%i2) vals: [ R_1= 1000.0*(1+tol[1]*.01), R_2= 2000.0*(1+tol[2]*.01) ]; (%o2) [R_1 = 1000.0 (0.01 tol + 1), 1 R_2 = 2000.0 (0.01 tol + 1)] 2
(%i3) divider: U_Out=U_In*(R_1)/(R_1+R_2); R_1 U_In (%o3) U_Out = --------- R_2 + R_1
(%i4) wc_montecarlo(subst(vals,rhs(divider)),10); (%o4) [0.3365488313167528 U_In, 0.3339089445851889 U_In, 0.314651402884122 U_In, 0.3447359711624277 U_In, 0.3294005710066001 U_In, 0.3330897542463686 U_In, 0.3397591863729343 U_In, 0.3227030530673181 U_In, 0.3385512773502185 U_In, 0.314764470912582 U_In]
Prints the minimum, maximum and typical value of expr. If n is positive, n values for each parameter will be tried systematically. If n is negative, -n random values are used instead. If no n is given, 3 is assumed.
Example:
(%i1) load("wrstcse")$ (%i2) ratprint:false$
(%i3) vals: [ R_1= 1000.0*(1+tol[1]*.01), R_2= 1000.0*(1+tol[2]*.01) ]; (%o3) [R_1 = 1000.0 (0.01 tol + 1), 1 R_2 = 1000.0 (0.01 tol + 1)] 2
(%i4) assume(U_In>0); (%o4) [U_In > 0]
(%i5) divider:U_Out=U_In*R_1/(R_1+R_2); R_1 U_In (%o5) U_Out = --------- R_2 + R_1
(%i6) lhs(divider)=wc_mintypmax(subst(vals,rhs(divider))); (%o6) U_Out = [min = 0.495 U_In, typ = 0.5 U_In, max = 0.505 U_In]
Appends two list of parameters with tolerances renumbering the tolerances of both lists so they don’t coincide.
Example:
(%i1) load("wrstcse")$
(%i2) val_a: [ R_1= 1000.0*(1+tol[1]*.01), R_2= 1000.0*(1+tol[2]*.01) ]; (%o2) [R_1 = 1000.0 (0.01 tol + 1), 1 R_2 = 1000.0 (0.01 tol + 1)] 2
(%i3) val_b: [ R_3= 1000.0*(1+tol[1]*.01), R_4= 1000.0*(1+tol[2]*.01) ]; (%o3) [R_3 = 1000.0 (0.01 tol + 1), 1 R_4 = 1000.0 (0.01 tol + 1)] 2
(%i4) wc_tolappend(val_a,val_b); (%o4) [R_1 = 1000.0 (0.01 tol + 1), 2 R_2 = 1000.0 (0.01 tol + 1), R_3 = 1000.0 (0.01 tol + 1), 1 4 R_4 = 1000.0 (0.01 tol + 1)] 3
Generates a parameter that uses the tolerance tolname that tolerates between the given values.
Example:
(%i1) load("wrstcse")$
(%i2) V_F: U_Diode=wc_mintypmax2tol(tol[1],.5,.75,.82); 2 (%o2) U_Diode = (- 0.09000000000000002 tol ) + 0.16 tol + 0.75 1 1
(%i3) lhs(V_F)=wc_mintypmax(rhs(V_F)); (%o3) U_Diode = [min = 0.5, typ = 0.75, max = 0.8199999999999998]
Previous: Introduction to wrstcse, Up: wrstcse [Contents][Index]