Next: Explicit Simplifications Using Identities, Previous: Trigonometric and Hyperbolic Functions, Up: Functions and Variables for Trigonometric [Contents][Index]
Default value: true
When %piargs
is true
,
trigonometric functions are simplified to algebraic constants
when the argument is an integer multiple
of
\(\pi,\)
\(\pi/2,\)
\(\pi/4,\)
or
\(\pi/6.\)
Maxima knows some identities which can be applied when \(\pi\) , etc., are multiplied by an integer variable (that is, a symbol declared to be integer).
Examples:
(%i1) %piargs : false$
(%i2) [sin (%pi), sin (%pi/2), sin (%pi/3)]; %pi %pi (%o2) [sin(%pi), sin(---), sin(---)] 2 3
(%i3) [sin (%pi/4), sin (%pi/5), sin (%pi/6)]; %pi %pi %pi (%o3) [sin(---), sin(---), sin(---)] 4 5 6
(%i4) %piargs : true$
(%i5) [sin (%pi), sin (%pi/2), sin (%pi/3)]; sqrt(3) (%o5) [0, 1, -------] 2
(%i6) [sin (%pi/4), sin (%pi/5), sin (%pi/6)]; 1 %pi 1 (%o6) [-------, sin(---), -] sqrt(2) 5 2
(%i7) [cos (%pi/3), cos (10*%pi/3), tan (10*%pi/3), cos (sqrt(2)*%pi/3)]; 1 1 sqrt(2) %pi (%o7) [-, - -, sqrt(3), cos(-----------)] 2 2 3
Some identities are applied when \(\pi\) and \(\pi/2\) are multiplied by an integer variable.
(%i1) declare (n, integer, m, even)$
(%i2) [sin (%pi * n), cos (%pi * m), sin (%pi/2 * m), cos (%pi/2 * m)]; m/2 (%o2) [0, 1, 0, (- 1) ]
Default value: true
When %iargs
is true
,
trigonometric functions are simplified to hyperbolic functions
when the argument is apparently a multiple of the imaginary
unit
\(i.\)
Even when the argument is demonstrably real, the simplification is applied; Maxima considers only whether the argument is a literal multiple of \(i.\)
Examples:
(%i1) %iargs : false$
(%i2) [sin (%i * x), cos (%i * x), tan (%i * x)]; (%o2) [sin(%i x), cos(%i x), tan(%i x)]
(%i3) %iargs : true$
(%i4) [sin (%i * x), cos (%i * x), tan (%i * x)]; (%o4) [%i sinh(x), cosh(x), %i tanh(x)]
Even when the argument is demonstrably real, the simplification is applied.
(%i1) declare (x, imaginary)$
(%i2) [featurep (x, imaginary), featurep (x, real)]; (%o2) [true, false]
(%i3) sin (%i * x); (%o3) %i sinh(x)
Default value: false
When halfangles
is true
, trigonometric functions of arguments
expr/2
are simplified to functions of expr.
For a real argument \(x\) in the interval \(0 \le x < 2\pi,\) \(\sin{x\over 2}\) simplifies to a simple formula:
A complicated factor is needed to make this formula correct for all complex arguments \(z = x+iy\):
Maxima knows this factor and similar factors for the functions sin
,
cos
, sinh
, and cosh
. For special values of the argument
\(z\) these factors simplify accordingly.
Examples:
(%i1) halfangles : false$
(%i2) sin (x / 2); x (%o2) sin(-) 2
(%i3) halfangles : true$
(%i4) sin (x / 2); x floor(-----) 2 %pi (- 1) sqrt(1 - cos(x)) (%o4) ---------------------------------- sqrt(2)
(%i5) assume(x>0, x<2*%pi)$
(%i6) sin(x / 2); sqrt(1 - cos(x)) (%o6) ---------------- sqrt(2)
Default value: true
When trigsign
is true
, it permits simplification of negative
arguments to trigonometric functions. E.g.,
\(\sin(-x)\)
will
become
\(-\sin x\)
only if trigsign
is true
.