Previous: Introduction to algebraic extensions, Up: Polynomials [Contents][Index]
Returns the factorization of f in the field factor(f, p)
which in fact calls algfac
. One can also
specify the variable a as in algfac(f, p, a)
.
Examples:
(%i1) algfac(x^4 + 1, a^2 - 2); 2 2 (%o1) (x - a x + 1) (x + a x + 1) (%i2) algfac(x^4 - t*x^2 + 1, a^2 - t - 2, a); 2 2 (%o2) (x - a x + 1) (x + a x + 1)
In the second example note that
Returns the norm of the polynomial
Examples:
(%i1) algnorm(x*a^2 + y*a + z,a^2 - 2, a); 2 2 2 (%o1)/R/ z + 4 x z - 2 y + 4 x
The norm is also the resultant of polynomials f and p, and the product of the differences of the roots of f and p.
Returns the trace of the polynomial
Example:
(%i1) algtrace(x*a^5 + y*a^3 + z + 1, a^2 + a + 1, a); (%o1)/R/ 2 z + 2 y - x + 2
Computes the discriminant of a basis
Example:
(%i1) bdiscr(1, x, x^2, x^3 - 2); (%o1)/R/ - 108 (%i2) poly_discriminant(x^3 - 2, x); (%o2) - 108
A standard base in an extension of degree n is
Computes a prime element for the extension of
Examples:
(%i1) primelmt(b^2 - a*b - 1, a^2 - 2, c); 4 2 (%o1) [c - 12 c + 9, b + a] (%i2) solve(b^2 - sqrt(2)*b - 1)[1]; sqrt(6) - sqrt(2) (%o2) b = - ----------------- 2 (%i3) primelmt(b^2 - 3, a^2 - 2, c); 4 2 (%o3) [c - 10 c + 1, b + a] (%i4) factor(c^4 - 12*c^2 + 9, a^4 - 10*a^2 + 1); 3 2 3 2 (%o4) ((4 c - 3 a - a + 27 a + 5) (4 c - 3 a + a + 27 a - 5) 3 2 3 2 (4 c + 3 a - a - 27 a + 5) (4 c + 3 a + a - 27 a - 5))/256 (%i5) primelmt(b^3 - 3, a^2 - 2, c); 6 4 3 2 (%o5) [c - 6 c - 6 c + 12 c - 36 c + 1, b + a] (%i6) factor(b^3 - 3, %[1]); 5 4 3 2 (%o6) ((48 c + 27 c - 320 c - 468 c + 124 c + 755 b - 1092) 5 5 4 4 3 3 2 2 ((- 48 b c ) - 54 c - 27 b c + 64 c + 320 b c + 360 c + 468 b c + 149 c 2 - 124 b c - 1272 c + 755 b + 1092 b + 1606))/570025
In (%o1), f_b depends on a
. Using solve
, the solution depends on sqrt(2) and sqrt(3).
In (%o3), b^3 - 3
gets one factor in this extension. If we assume this extension is real,
the two other factors are complex.
Computes the splitting field of the polynomial
Examples:
(%i1) splitfield(x^3 + x + 1, x); 4 2 6 4 2 alg1 + 5 alg1 - 9 alg1 + 4 (%o1)/R/ [alg1 + 6 alg1 + 9 alg1 + 31, ----------------------------, 18 4 2 4 2 alg1 + 5 alg1 + 4 alg1 + 5 alg1 + 9 alg1 + 4 - -------------------, ----------------------------] 9 18 (%i2) splitfield(x^4 + 10*x^2 - 96*x - 71, x)[1]; 8 6 5 4 3 (%o2)/R/ alg2 + 148 alg2 - 576 alg2 + 9814 alg2 - 42624 alg2 2 + 502260 alg2 + 1109952 alg2 + 18860337
In the first case we have the primitive polynomial of degree 6 and the 3 roots
of the third degree equations in terms of a variable alg1
produced by
the system. In the second case the primitive polynomial is of degree 8
instead of 24, because the Galois group of the equation is reduced to D8
since there are relations between the roots.
Previous: Introduction to algebraic extensions, Up: Polynomials [Contents][Index]