Previous: , Up: Special Functions   [Contents][Index]

15.10 Functions and Variables for Special Functions

Function: lambert_w (z)

The principal branch of Lambert’s W function W(z) (DLMF 4.13), the solution of

z=W(z)eW(z)

Categories: Special functions ·
Function: generalized_lambert_w (k, z)

The k-th branch of Lambert’s W function W(z) (DLMF 4.13), the solution of z=W(z)eW(z) .

The principal branch, denoted Wp(z) in DLMF, is lambert_w(z) = generalized_lambert_w(0,z).

The other branch with real values, denoted Wm(z) in DLMF, is generalized_lambert_w(-1,z).

Categories: Special functions ·

Function: kbateman [v] (x)

The Bateman k function

kv(x)=2π0π2cos(xtanθvθ)dθ

It is a special case of the confluent hypergeometric function. Maxima can calculate the Laplace transform of kbateman using laplace or specint, but has no other knowledge of this function.

Categories: Special functions ·
Function: nzeta (z)

The Plasma Dispersion Function

nzeta(z)=iπez2(1erf(iz))

Categories: Special functions ·
Function: nzetar (z)

Returns realpart(nzeta(z)).

Categories: Special functions ·

Function: nzetai (z)

Returns imagpart(nzeta(z)).

Categories: Special functions ·


Previous: , Up: Special Functions   [Contents][Index]

JavaScript license information