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CHAPTER 1

Introduction

1.1 What is Maxima?

Maxima (pronounced mæxime1) is a large computer program designed for the manipulation of algebraic expressions.
You can use Maxima for manipulation of algebraic expressions involving constants, variables, and functions. It can
differentiate, integrate, take limits, solve equations, factor polynomials, expand functions in power series, solve differ-
ential equations in closed form, and perform many other operations. It also has a programming language that you can
use to extend Maxima’s capabilities.

The Dangers of Computer Algebra

With all this marvelous capability, however, you must bear in mind the limitations inherent in any such tool.
Those considering the use of computers to do mathematics, particularly students, must be warned that these systems
are no substitute for hands on work with equations and struggling with concepts. These systems do not build your
mathematical intuition, nor will they strengthen your core skills. This will matter a great deal down the road, especially
to those of you who wish to break new ground in theoretical mathematics and science. Do not use a computer as a
substitute for your basic education.

By the same token, however, proficiency with computers and computer based mathematics is crucial for attacking
the many problems which literally cannot be solved by pencil and paper methods. In many cases problems which
would take years by hand can be reduced to seconds by powerful computers. Also, in the course of a long derivation,
it is sometimes useful for those who have already mastered the fundamentals to do work in these systems as a guard
against careless errors, or a faster means than a table of deriving some particular result. Also, in case of an error,
fixing the resulting error can often be much quicker and simpler courtesy of a mathematical notebook, which can be
reevaluated with the correct parameters in place.

But just as a computer can guard against human error, the human must not trust the computer unquestioningly. All
of these systems have limits, and when those limits are reached it is quite possible for bizarre errors to result, or in some
cases answers which are actually wrong, to say nothing of the fact that the people who programmed these systems
were human, and make mistakes. To illustrate the limits of computer algebra systems, we take the following example:
when given the integralIntegrate 1/sqrt(2-2*cos(x)) from x=-pi/2 to pi/2, Mathematica 4.1 gives, with
no warnings,\!\(2\ Log[4] - 2\ Log[Cos[\[Pi]\/8]] + 2\ Log[Sin[\[Pi]\/8]]\) which N[%] evalutates
numerically to give 1.00984. Maxima 5.6 returns the integral unevaluated, the commercial Macsyma says the integral
is divergent, and Maple 7 says infinity. (Cite Maxima Email list here.) Had the person who wished to learn the result

1The acronym Maxima is the corruption of the main project name MACSYMA, which stands for Project MAC’s SYmbolic MAnipulation
System.MAC itself is an acronym, usually cited as meaning Man and Computer or Machine Aided Cognition. The Laboratory for Computer Science
at the Massachusetts Institute of Technology was known as Project MAC during the initial development of MACSYMA. The name MACSYMA is
now trademarked by Macsyma Inc.

7
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blindly trusted most of the systems in question, he might have been misled. So remember to think about the results
you are given. The computer is not always necessarily right, and even if it gives a correct answer that answer is not
necessarily complete.

1.2 A Brief History of Macsyma

The birthplace of Macsyma, where much of the original coding took place, was Project MAC at MIT in the late 1960s
and earlier 1970s. Project MAC was an MIT research unit, which was folded into the current Laboratory for Computer
Science. Research support for Macsyma included the Advanced Research Projects Agency(ARPA), Department of
Defense, the US Department of Energy, and other government and private sources.

The original idea, first voiced by Marvin Minsky, was to automate the kinds of manipulations done by mathe-
maticians, as a step toward understanding the power of computers to exhibit a kind of intelligent behavior. [?] The
undertaking grew out of a previous effort at MITRE Corp called Mathlab, work of Carl Engelman and others, plus
the MIT thesis work of Joel Moses on symbolic integration, and the MIT thesis work of William A. Martin. The
new effort was dubbed Macsyma - Project MAC’s SYmbolic MAnipulator. The original core design was done in July
1968, and coding began in July 1969. This was long before the days of personal computers and cheap memory - initial
development was centered around a single computer shared with the Artificial Intelligence laboratory, a DEC PDP-6.
This was replaced by newer more powerful machines over the years, and eventually the Mathlab group acquired its
own DEC-PDP-10, MIT-ML running the ITS operating system. This machine became a host on the early ARPANET,
predecessor to the internet, which helped it gain a wider audience. As the effort grew in scope and ability the general
interest it created led to attempts to "port" the code - that is, to take the series of instructions which had been written
for one machine and operating system and adapt them to run on another, different system. The earliest such effort was
the running of Macsyma in a MacLisp environment on a GE/Honeywell Multics mainframe, another system at MIT.
The Multics environment provided essentially unlimited address space, but for various reasons the system was not
favored by programmers and the Multics implementation was never popular. The next effort came about when a group
at MIT designed and implemented a machine which was based on the notion that hardware support of Lisp would
make it possible to overcome problems that inhibited the solution of many interesting problems. The Lisp machine
clearly had to support Macsyma, the largest Lisp program of the day, and the effort paid off with probably the best
environment for Macsyma to date (although requiring something of an expert perspective). Lisp machines, as well
as other special purpose hardware, tended to become slow and expensive compared to off-the-shelf machines built
around merchant-semiconductor CPUs, and so the two companies that were spun off from MIT (Symbolics Inc, and
LMI) both eventually disappeared. Texas Instruments built a machine called the Explorer bases on the LMI design,
but also stopped production.

Around 1980, the idea of porting Macsyma began to be more interesting, and the Unix based vaxima distribution,
which ran on a Lisp system built at the University of California at Berkeley for VAX UNIX demonstrated that it was
both possible and practical to run the software on less expensive systems. (This system, Franz Lisp, was implemented
primarily in Lisp with some parts written in C.) Once the code stabilized, the new version opened up porting possibili-
ties, ultimately producing at least six variations on the theme which included Macsyma, Maxima, Paramax/Paramacs,
Punimax, Aljbar, and Vaxima. These have followed somewhat different paths, and most were destined to fade into the
sunset. The two which survived obscurity, Maxima and Macsyma, we will discuss below. Punimax was actually an
offshoot of Maxima - some time around 1994 Bruno Haible (author of clisp) ported maxima to clisp. Due to the legal
concerns of Richard Petti, then the owner of the commercial Macsyma, the name was changed to Punimax. It has not
seen much activity since the initial port, and although it is still available the ability of the main Maxima distribution to
compile on Clisp makes further development of Punimax unlikely.

There is a certain surprising aspect in this multiplicity of versions and platforms, given how the code seemed tied
to the development environment, which included a unique operating system. Fortunately, Berkeley’s building a replica
of the Maclisp environment on the MIT-ML PDP-10, using tools available in almost any UNIX/C environment, helped
solve this problem. Complicating the matter was the eventual demise of the PDP-10 and Maclisp systems as Common
Lisp (resembling lisp-machine lisp), influenced by BBN lisp and researchers at Stanford, Carnegie Mellon University,
and Xerox, began to take hold. It seemed sensible to re-target the code to make it compatible with what eventually
became the ANSI Common Lisp standard. Since almost everything needed for for Macsyma can be done in ANSI
CL, the trend toward standardization made many things simpler. There are a few places where the language is not
standardized, in particular connecting to modules written in other languages, but much of the power of the system can
be expressed within ANSI CL. It is a trend the Maxima project is planning to carry on, to maintain and expand on this
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flexibility which has emerged.
With all these versions, in recent history there are two which have been major players, due this time more to

economics than to code quality. 1982 was a watershed year in many respects for Macsyma - it marks clearly the
branching of Macsyma into two distinct products, and ultimately gave rise to the events which have made Maxima
both possible and desirable. MIT had decided, with the gradual spread of computers throughout the academic world, to
put Macsyma on the market commercially, using as a marketing partner the firm of Arthur D. Little, Inc. This version
was sold to the Symbolics Inc., which, depending on your perspective, either turned the project into a significant
marketing effort to help sell their high-priced lisp machines, or was a diversionary tactic to deny their competitors
(LMI) this program. At the same time MIT forced UC Berkeley (Richard Fateman) to withdraw the copies from
about 50 sites of the VAX/UNIX and VAX/VMS versions of Macsyma that he had distributed with MIT’s consent,
until some agreement could be reached for technology transfer. Symbolics hired some of the MIT staff to work at
Symbolics in order to improve the code,which was now proprietary. The MIT-ML PDP-10 also went off the Arpanet
in 1983. (Interestingly, the closing of the MIT Lisp and Macsyma efforts was a key reason Richard Stallman decided
to form the Free Software Foundation.) Between the high prices, closed source code, and neglecting all platforms in
favor of Lisp Machines pressure came to bear on MIT to release another version to accommodate these needs, which
they did with some reluctance. The new version was distributed via the National Energy Software Center, and called
DOE Macsyma. It had been re-coded in a dialect of lisp written for the VAX at MIT called NIL. There was never a
complete implementation. At about the same time a VAX/UNIX version "VAXIMA" was put into the same library
by Berkeley. This ran on any of hundreds of machines running the Berkeley version of VAX Unix, and through a
UNIX simulator on VMS, on any VAX system. The DOE versions formed the basis of the subsequent non-Symbolics
distributions. The code was made available through the National Energy Software Center, which in its attempt to
recoup its costs, charged a significant fee($1-2k?). It provided full source, but in a concession to MIT, did not allow
redistribution. This prohibition seems to have been disregarded, and especially so since NESC disappeared. Perhaps
it didn’t recoup its costs! Among all the new activity centered around DOE Macsyma, Prof. William Schelter began
maintaining a version of the code at UT Austin, calling his variation Maxima. He refreshed the NESC version with a
common-lisp compatible code version.

There were, from the earliest days, other computer algebra systems including Reduce, CAMAL, Mathlab-68, PM,
and ALTRAN. More serious competition, however, did not arrive until Maple and Mathematica were released, Maple
in 1985 (Cite list of dates) and Mathematica in 1988 (cite wolfram website). These systems were inspired by Macsyma
in terms of their capabilities, but they proved to be much better at the challenge of building mind-share. DOE-
Macsyma, because of the nature of its users and maintainers, never responded to this challenge. Symbolics’ successor
Macsyma Inc, having lost market share and unable to meet its expenses, was sold in the summer of 1999 after attempts
to find endowment and academic buyers failed. (Cite Richard Petti usenet post.) The purchaser withdrew Macsyma
from the market and the developers and maintainers of that system dispersed. Mathematica and Maple appeared to
have vanquished Macsyma.

It was at this point Maxima re-entered the game. Although it was not widely known in the general academic public,
W. Schelter had been maintaining and extending his copy of the code ever since 1982. He had decided to see what
he could do about distributing it more widely. He attempted to contact the NESC to request permission to distribute
derivative works. The duties of the NESC had been assumed in 1991 by the Energy Science and Technology Software
Center, which granted him virtually unlimited license to make and distribute derivative works, with some minor export
related caveats.

It was a significant breakthrough. While Schelter’s code had been available for downloading for years, this activity
became legal with the release from DOE granted in Oct. 1998, and Maxima began to attract more attention. When
the Macsyma company abruptly vanished in 1999, with no warning or explanation, it left their customer base hanging.
They began looking for a solution, and some drifted toward Maxima.

Dr. Schelter maintained the Maxima system until his untimely death in July, 2001. It was a hard and unexpected
blow, but Schelter’s obtaining the go-ahead to release the source code saved the project and possibly even the Macsyma
system itself. A group of users and developers who had been brought together by the email list for Maxima decided to
try and form a working open source project around the Maxima system, rather than let it fade - which is where we are
today.



CHAPTER 2

Available Interfaces to Maxima

Maxima is at heart a command line program, and by itself it is not capable of displaying formatted mathematics
beyond the ascii text level. However there are other interfaces which may be used. Maxima has the ability to export
expressions using the TEX syntax, and some programs use this device to help with output formatting. (None at this
time allow formatted input.) All have their strengths and weaknesses - the choice will likely depend on the skill of
the user and the task at hand. We will discuss here all of the interfaces currently available, and the user can make the
choice him/herself which one to use.

2.1 The Terminal Interface

The terminal interface is the original interface to Maxima. While in some sense all of the interfaces to Maxima
could be termed Terminal interfaces, when we refer to it here we mean the command line, no frills interface you would
use in an xterm or a nongraphical terminal. It is the least capable of all the alternatives in many respects, but it is also
the least demanding.

10



CHAPTER 2. AVAILABLE INTERFACES TO MAXIMA 11

How comfortable this interface is depends to some extent on what Lisp you used to compile Maxima originally. If
Maxima is started by simply typingmaxima on the terminal prompt, the usability depends on which lisp implimentation
Maxima is running on. Clisp will have readline support, and most builds of GNU Common Lisp will as well. CMUCL
and SBCL, however, will not have this support by default. As a consequence the back arrow will not function and a
command history will not be present.

A solution to this problem is available on Linux in the form of the programrmaxima. rmaxima is a script that uses
the rlwrap utility to add advanced command line features to Maxima when native readline is not available. (Note that
rlwrap is not installed by Maxima - it must already be present on the system in question.)

The maxima.bat command provides a command line interface on Windows, but this is not recommended for
casual users.

2.2 The Emacs Interface

A really excellent Emacs mode has been written for Maxima. For those who prefer a non-graphical environment for
Maxima, the Emacs mode is the most sophisticated solution available.

2.2.1. Installing the Maxima Emacs Mode

The Emaxima package consists of the filesmaxima.el, emaxima.el, maxima-font-lock.el, emaxima.sty and
emaxima.lisp. To install, place the.el files, as well asemaxima.lisp1 somewhere in the load path for Emacs.
Finally, if you want to run LATEX on the resulting document, putemaxima.sty somewhere in the TEX inputs path. If
you use pdflatex, you’ll also needpdfcolmk.sty.

Although AucTeX is not strictly necessary, you will most likely find it worth you time to install it, as many of the
best features of Emaxima are LaTeX oriented.

Copy the.el and.lisp files to the site-lisp directory of your Emacs installation. On a Redhat Linux system, for
example, this would be /usr/share/emacs/site-lisp, /usr/local/share/emacs/site-lisp, or some variation thereof. Copy the
.sty files to a directory where LaTeX can see them - I’ve found on Redhat Linux /usr/share/texmf/tex/latex/emaxima
works fairly well. Once you have done this, run the command mktexlsr. You should now be almost ready to roll.

The last step is to edit your .emacs file. In order to use the enhanced terminal mode, insert the following line:

(autoload ’maxima "maxima" "Maxima interaction" t)

If you wish to associate files ending in.max with this particular Emacs mode, add this line:

(setq auto-mode-alist (cons ’("\\.max" . maxima-mode) auto-mode-alist)

This will allow you to start Maxima from within Emacs. You can do this one of two ways - either start Emacs and
from within it typeM-x maxima, or from the command line typeemacs -f maxima to have the whole thing work in
one step. If you wish to create a desktop icon to start the command line Maxima, simply place this line where they ask
you what the name of your program or executable is, and it should work quite smoothly.

For Maxima-mode, add the following line to .emacs:

(autoload ’maxima-mode "maxima" "Maxima mode" t)

The commandM-x maxima-mode will start you off here.
In the case of Emaxima, the line

(autoload ’emaxima-mode "emaxima" "EMaxima" t)

should be inserted into your .emacs file. Then typingM-x emaxima-mode will start Emaxima mode. The command
M-x emaxima-mark-file-as-emaxima will put the line

%-*-EMaxima-*-

at the beginning of the file, if it isn’t there already, and will ensure that the next time the file is opened, it will be in
emaxima-mode. This can be done automatically everytime a file is put inemaxima-mode by putting the line

1If Emacs cannot findemaxima.lisp, then the TEX output functions will not work, any attempts to get TEX output will only result in standard
output.



CHAPTER 2. AVAILABLE INTERFACES TO MAXIMA 12

(add-hook ’emaxima-mode-hook ’emaxima-mark-file-as-emaxima)

somewhere in your.emacs file.

2.2.2. Maxima-mode

This mode is fairly basic, and is not dependant on LaTeX. It basically amounts to a text editor which allows you to
send lines to Maxima.

For moving around in the code, Maxima mode provides the following
Maxima mode has the following completions commands:

Motion
Key Description
M-C-a Go to the beginning of the form.
M-C-e Go to the end of the form.
M-C-b Go to the beginning of the sexp.
M-C-f Go to the end of the sexp.

Process
Key Description
C-cC-p Start a Maxima process.
C-cC-r Send the region to the Maxima process.
C-cC-b Send the buffer to the Maxima process.
C-cC-c Send the line to the Maxima process.
C-cC-e Send the form to the Maxima process.
C-cC-k Kill the Maxima process.
C-cC-p Display the Maxima buffer.

Completion

Key Description
M-TAB Complete the Maxima symbol.

Comments
Key Description
C-c ; Comment the region.
C-c : Uncomment the region.
M-; Insert a short comment.
C-c * Insert a comment environment.

Indentation
Key Description
TAB Indent line.
M-C-q Indent form.

Maxima help

Key Description
C-c C-d Get help on a (prompted for) subject.
C-c C-m Read the manual.
C-cC-h Get help with the symbol under point.
C-cC-a Get apropos with the symbol under point.

Miscellaneous
Key Description
M-h Mark the form.
C-c) Check the region for balanced parentheses.
C-c C-) Check the form for balanced parentheses.

When something is sent to Maxima, a buffer running an inferior Maxima process will appear. It can also be made to
appear by using the commandC-c C-p. If an argument is given to a command to send information to Maxima, the
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Figure 2.1: Maxima-mode
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region (buffer, line, form) will first be checked to make sure the parentheses are balanced. The Maxima process can
be killed, after asking for confirmation withC-cC-k. To kill without confirmation, giveC-cC-k an argument.

The behaviour of indent can be changed by the commandM-x maxima-change-indent-style. The possibilities
are:

Standard Standard indentation.

Perhaps smart Tries to guess an appropriate indentation, based on open parentheses, "do" loops, etc. A newline will
re-indent the current line, then indent the new line an appropriate amount.

The default can be set by setting the value of the variablemaxima-newline-style to either’standard or’perhaps-smart.
In all cases,M-x maxima-untab will remove a level of indentation.

2.2.3. Enhanced Terminal Mode

For those just want a better terminal session, you can run a regular terminal style session in Emacs. This gives you
everything the terminal interface does, plus syntax highlighting, plus more flexibility when editing your commands. If
you already have a copy of Emacs open, you can start up the Maxima buffer by typingM-x maxima . If you do not
have Emacs running, a shortcut is to start emacs using the following command:emacs -f maxima .

In the Maxima process buffer, return will check the line for balanced parentheses, and send line as input. Control
return will send the line as input without checking for balanced parentheses. The following commands are also
available.

M-TAB Complete the Maxima symbol as much as possible, providing a com-
pletion buffer if there is more than one possible completion. (If
maxima-use-dynamic-complete is non-nil, then instead this will cycle
through possible completions.

C-M-TAB Complete the input line, based on previous input lines.
C-c C-d Get help on a Maxima topic.
C-c C-m Bring up the Maxima info manual.
C-cC-k Kill the process and the buffer, after asking for confirmation. To kill without

confirmation, giveC-cC-k an argument.
M-p Bring the previous input to the current prompt.
M-n Bring the next input to the prompt.
M-r Bring the previous input matching a regular expression to the prompt.
M-s Bring the next input matching a regular expression to the prompt.

2.2.4. Emaxima Mode

Emaxima is a major mode for Emacs that allows the user to insert Maxima sessions and code in a LATEX document.
It is based on Dan Dill’s TEX/Mathematicapackage2, and uses a modified version of William Schelter’smaxima.el.
Emaxima is an extension of the LATEX mode provided by AUCTEX3, and so has the LATEX mode commands available.
The resulting document can be processed by LATEX; this requires putting

\usepackage{emaxima}

in the preamble.
This is in no sense a graphical environment, and the user will not see the benefits of any TeX formatting in real

time. This mode is most useful to those who are accustomed to writing documents in LaTeX, and would like to include
Maxima sessions in them. This manual itself is a good example of Emaxima in action.

2TEX/Mathematicais available fromftp://chem.bu.edu/pub/tex-mathematica-2.0.
3This can be configured so that Emaxima extends the standard TEX mode provided by Emacs, or just text mode.

ftp://chem.bu.edu/pub/tex-mathematica-2.0


CHAPTER 2. AVAILABLE INTERFACES TO MAXIMA 15

Figure 2.2: Enhanced Terminal Mode



CHAPTER 2. AVAILABLE INTERFACES TO MAXIMA 16

Cells

The basic unit of Maxima code in Emaxima is acell. A cell consists of text between the delimiters

\beginmaxima

and

\endmaxima

A cell can be created by typingC-c C-o. (TheC-o in this case stands foropening a cell.) The delimiters will then be
placed in the buffer, and the point will be placed between them.

When working with several cells, you can jump between them by usingC-c + to go to the next cell andC-c - to
go to the previous cell.

Evaluating cells

To evaluate the contents of a cell, the commandC-cC-uc (emaxima-update-cell)4 will send the contents of the cell
to a Maxima process (if there is no Maxima process running, one will be started) and return the results to the cell,
separated from the input by the marker

\maximaoutput

To differentiatesin(x2), for example, typediff(sin(xˆ2),x); in a cell:

\beginmaxima
diff(sin(x^2),x);
\endmaxima

After typingC-c C-u c, it will look like

\beginmaxima
diff(sin(x^2),x);
\maximaoutput

2
2 x COS(x )

\endmaxima

To delete the output and return the cell to its original form, you can use the commandC-c C-d. If the document is to
be TEXed, the above cell will look like:

Maxima

diff(sin(x^2),x);

and the cell with output will look like:

Maxima

diff(sin(x^2),x);

Output

2
2 x COS(x )

Emaxima mode can take advantage of the fact that Maxima can give its output in LATEX form. The commandC-c
C-u C works the same asC-c C-u c, except now the output is in LATEX form, ready to be formatted by LATEX. In
general, ifC-c C-u letter returns Maxima output, thenC-c C-u capital letter will return the output in TEX form.
The above cell would become

4Sending the cells contents to a Maxima process and returning the results is calledupdating the cell, the prefixC-c C-u will be used to update
cells in different ways.
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Figure 2.3: An Emaxima Session
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\beginmaxima
diff(sin(x^2),x);
\maximatexoutput
$$ 2\*x\*\cos x^{2} $$
\endmaxima

which, when LATEXed, would become

Maxima

diff(sin(x^2),x);

TEX Output

2x cosx2

(Note that whenever a cell is updated, any old output is discarded and replaced with new output.) The commandC-c
C-u a will update all of the cells in your document, stopping at each one to ask if you indeed want it updated. Given
an argument,C-u C-c C-u a, it will update all of the cells in your document without asking. The commandC-c C-u
A behaves similarly, except now all the output is returned in LATEX form.

Initialization Cells

It is possible that you want certain cells evaluated separate from the others; perhaps, for example, you want certain
cells evaluated whenever you open the document. This can be done using initialization cells. An initialization cell is
delimited by

\beginmaxima[* Initialization Cell *]

and

\endmaxima

The commandC-c C-t will turn a cell into an initialization cell, applyingC-c C-t again will turn it back into a
regular cell. When LATEXed, an initialization cell will look like

Maxima

diff(sin(x^2),x);

Initialization cells behave like regular cells, except that they can be treated as a group. To evaluate all initialization
cells (without displaying the output in the document buffer), the commandC-c C-u t will go to each of the initializa-
tion cells and evaluate them. If you want the output of the initialization cells to be brought back to the document buffer,
stopping at each one to see it you indeed want it updated, then use the commandC-c C-u i. With an argument,C-u
C-c C-u i, the initialization cells will be updated without asking. The commandC-c C-u I behaves just likeC-c
C-u i, except that the output is returned in TEX form.

Referencing Other Cells

Instead of Maxima code, a cell can contain a reference to another cell, and when the original cell is sent to Maxima,
the reference is replaced by the referenced cell’s contents (but only in the Maxima process buffer, the cell’s content
in the document’s buffer is not changed). In order to do this, the original cell must be marked by having a label of
the form<filename:cell label>. (The reason for thefilename will become apparent later, andcell label is optional
for the referencing cell.) The referenced cell must also be labeled, with the samefilename but a uniquecell label. To
reference the other cell, the original cell need only contain the marker for the referenced cell. For example, given cell
1:
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\beginmaxima<filename:optional>
<filename:definef>
diff(f(x),x);
\endmaxima

and cell 2:

\beginmaxima<filename:definef>
f(x):=sin(x^2);
\endmaxima

then the result of updating cell 1 (C-c C-u c) will be:

\beginmaxima<filename:optional>
<filename:definef>
diff(f(x),x);
\maximaoutput

2
f(x) := SIN(x )

2
2 x COS(x )

\endmaxima

When LATEXed, the top line will contain a copy of the marker.

Maxima <filename:optional>

<filename:definef>
diff(f(x),x);

Output

2
f(x) := SIN(x )

2
2 x COS(x )

A cell can contain more than one reference, and referenced cells can themselves contain references.
To aid in labelling the cells, the commandC-c C-x will prompt for a label name and label the cell. To aid in calling

references, the commandC-c C-TAB can be used for completing the thefilename andcell label parts of a reference,
based on the current labels. Another option is to set the Emacs variableemaxima-abbreviations-allowed to t, say,
by putting the line

(setq emaxima-abbreviations-allowed t)

in your .emacs file. This will allow thefilename andcell label parts of a reference to be abbreviated by enough of a
prefix to uniquely identify it, followed by ellipses... For example, if there are cells labelled

<filename:long description>
<filename:lengthy description>

Then the reference

<...:le...>

will suffice to refer to the second label above.
If you want the references in a cell to be replaced by the actual code, the commandC-c @ will expand all the

references and put the code into a separate buffer (so it will not affect the original document).
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WEB

The reason for the ability to reference other cells is so that you can write what Donald Knuth calls literate programs.
The idea is that the program is written in a form natural to the author rather than natural to the computer. (Another
aspect of Knuth’s system is that the code is carefully documented, hence the name “literate programming”, but that is
done naturally in Emaxima.) Knuth called his original literate programming toolWEB, since, as he puts it, “the structure
of a software program may be thought of as a web that is made up of many interconnected pieces.” Emaxima’s ability
in this respect is taken directly from TEX/Mathematica, and is ultimately based onWEB. To create a program, the “base
cell” or “package cell” should contain a label of the form<filename:> (no cell label), and can contain references of
the form<filename:part> (same file name as the base cell).

As a simple (and rather silly) example, suppose we want to create a program to sum the firstn squares. We could
start:

\beginmaxima<squaresum.max:>
squaresum(n) := (

<squaresum.max:makelist>
<squaresum.max:squarelist>
<squaresum.max:addlist>
);

\endmaxima

We would then need cells

\beginmaxima<squaresum.max:makelist>,
L:makelist(k,k,1,n),
\endmaxima

\beginmaxima<squaresum.max:squarelist>
<squaresum.max:definesquare>
L:map(square,L),
\endmaxima

\beginmaxima<squaresum.max:addlist>
lsum(k,k,L)
\endmaxima

and then we would also need:

\beginmaxima<squaresum.max:definesquare>
square(k) := k^2,
\endmaxima

When TEXed, the header of the cell will say that it determines the filesquaresum.mu.

Maxima Definition of package squaresum.max

squaresum(n) := (
<squaresum.max:makelist>
<squaresum.max:squarelist>
<squaresum.max:addlist>
);

The commandC-u C-c @ will put all the pieces together in the file it determines. The resulting file, in this case,
will be squaresum.max and will look like:

squaresum(n) := (
L:makelist(k,k,1,n),
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square(k) := k^2,
L:map(square,L),
lsum(k,k,L)
);

(Although the idea is that only the computer need look at this file.)

Other types of cells

When a cell is TEXed, the input and output are kept separate. To have the results look like a Maxima session, there
are, in addition to the standard cells, special cells calledsession cells. A session cell is delimited by

\beginmaximasession

and

\endmaximasession

The commandC-c C-p will create a session cell. When a session cell is updated, the output will be marked off with
\maximasession, and will contain both the input and the output, with the Maxima prompts. For example, if the
session cell

\beginmaximasession
diff(sin(x),x);
int(cos(x),x);
\endmaximasession

were updated, the result would look like

\beginmaximasession
diff(sin(x),x);
integrate(cos(x),x);
\maximasession
(C1)diff(sin(x),x);

(D1) COS(x)
(C2)integrate(cos(x),x);

(D2) SIN(x)
\endmaximasession

which, when TEXed, would look like

(C1)diff(sin(x),x);
(D1) COS(x)
(C2)integrate(cos(x),x);
(D2) SIN(x)

If it is updated in TEX form, it will look like

\beginmaximasession
diff(sin(x),x);
integrate(cos(x),x);
\maximatexsession
\C1. diff(sin(x),x); \\
\D1. \cos x \\
\C2. integrate(cos(x),x); \\
\D2. \sin x \\
\endmaximasession
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which, when TEXed, will look like

(%i1) diff(sin(x),x);
(%o1)

cosx

(%i2) integrate(cos(x),x);
(%o2)

sinx

For particularly long output lines inside the\maximatexsession part of a session cell, the command\DD will
typeset anything between the command and\\. Unfortunately, to take advantage of this, the output has to be broken
up by hand. If a session cell has not been updated, or has no output for some other reason, it will not appear when the
document is TEXed.

There is one other type of cell, anoshow cell, which can be used to send Maxima a command, but won’t appear in
the TEXed output. A noshow cell can be created withC-c C-n, and will be delimited by

\beginmaximanoshow

and

\endmaximanoshow

Session cells and noshow cells cannot be initialization cells or part of packages.5

If the command to create one type of cell is called while inside another type of cell, the type of cell will be changed.
So, for example, the commandC-c C-p from inside the cell

\beginmaxima
diff(x*sin(x),x);
\endmaxima

will result in

\beginmaximasession
diff(x*sin(x),x);
\endmaximasession

If a standard cell is an initialization cell or a package part, its type cannot be changed.

Miscellaneous

Some Maxima commands can be used even outside of cells. The commandC-c C-u l send the current line to a
Maxima process, comment out the current line, and insert the Maxima output in the current buffer. The commandC-c
C-u L will do the same, but return the result in LATEX form.

The commandC-c C-h will provide information on a prompted for function (like Maxima’sdescribe), andC-c
C-i will give the Maxima info manual.

Finally, the Maxima process can be killed withC-c C-k.

Customizing EMaxima

There are a few things that you can do to customize Emaxima.
By default, Emaxima is an extension of AUCTEX mode. This can be changed by changing the variableemaxima-use-tex.

The possible values are’auctex, ’tex andnil. Settingemaxima-use-tex (the default) to’auctex will make Emax-
ima an extension of AUCTEX, setting it to’tex will make Emaxima an extension of Emacs’s default TEX mode, and
settingemaxima-use-tex to nil will make Emaxima an extension of text-mode. So, for example, putting

5That could be changed, but I don’t know why it’d be useful.
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(setq emaxima-use-tex nil)

in your.emacs file will make Emaxima default to an extension of text mode.
Whether or not the dots (. . . ) abbreviation is allowed in cell references is controlled by the elisp variableemaxima-abbreviations-allowed,

which is set tot by default. Setting this tonil will disallow the abbreviations, but will speed up package assembly.
The LATEXed output can also be configured in a couple of ways. The lines that appear around cells when the

document is TEXed can be turned off with the command (in the LATEX document)

\maximalinesfalse

They can be turned back on with the command

\maximalinestrue

The fonts used to display the Maxima input and output in a cell are by defaultcmtt10. They can be changed,
seperately, by changing the TEX values of\maximainputfont and\maximaoutputfont. So, for example, to use
cmtt12 as the input font, use the command

\font\maximainputfont = cmtt12

The spacing in the cells can be controlled by changing the TEX variables\maximainputbaselineskip and\maximaoutputbaselineskip,
and so to increase the space between the lines of the output, the command

\maximaoutputbaselineskip = 14pt

could be used. The amount of space that appears before a cell can be changed by changing the value of\premaximaspace
(by default, 0pt), and that after a cell can be changed by changing the value of\postmaximaspace (by default, 1.5
ex).

Session cells can be configured similarly. Lines can be placed around a Maxima session with the command

\maximasessionlinestrue

and they can be turned back off with

\maximasessionlinesfalse

The font can be changed by changing the value of\maximasessionfont. The color of the prompts when the session
is in TEX form is controlled by
\maximapromptcolor, by default red, the colors of the input lines and output lines are controlled by\maximainputcolor
and\maximaoutputcolor, respectively. So the command

\def\maximainputcolor{green}

would make the input in a TEXed session green. The session can be TEXed without the colors by using the command
\maximasessionnocolor. The baselineskip is set by\maximasessionbaselineskip for normal session cells, and
by \maixmatexsessionbaselineskip for TEX sessions. The amount of space that appears before a session cell can
be changed by changing the value of\premaximasessionspace (by default, 0pt), and that after a cell can be changed
by changing the value of\postmaximasessionspace (by default, 1.5 ex).
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Emaxima mode commands

Key Description
C-c C-o Create a (standard) cell.
C-c C-p Create a session cell.
C-c C-n Create a noshow cell.
C-c + Go the the next cell.
C-c - Go to the previous cell.
C-c C-u a Update all of the cells. With an argument, don’t ask before updating.
C-c C-u A Update all of the cells in TEX form. With an argument don’t ask before

updating.
C-c C-u t Evaluate all of the initialization cells.
C-c C-u i Update all of the initialization cells. With an argument, don’t ask before

updating.
C-c C-u I Update all of the initialization cells in TEX form. With an argument, don’t

ask before updating.
C-c C-u s Update all of the session cells in TEX form. With an argument, don’t ask

before updating.
C-c C-k Kill the current Maxima core - this will lose all data entered into the maxima

system up until this point by other cells.

Commands only available in cells.

Key Description
C-c C-v Send the current cell to the Maxima process.
C-c C-u c Update the current cell.
C-c C-u C Update the current cell in TEX form.
C-c C-d Delete the output from the current cell.
C-c C-t Toggle whether or not the current cell is an initialization cell.
C-c C-x Insert a heading for the cell indicating that it’s part of a package.
C-c @ Assemble the references contained in the cell. With an argument, assemble

the package that the cell defines.
C-c C-TAB Complete a reference within a cell.

Commands only available outside of cells.

Key Description
C-c C-u l Send the current line to Maxima, and replace the line with the Maxima out-

put.
C-c C-u L Send the current line to Maxima, and replace the line with the Maxima output

in TEX form.

AUCTEX commands

Inserting commands

Key Description
C-c C-e Insert an environment.
C-c C-s Insert a section.
C-c ] Close an environment.
C-c C-j Insert an item into a list.
" Smart quote.
$ Smart dollar sign.
C-c @ Insert double brace.
C-c C-m Insert TEX macro.
M-TAB Complete TEX macro.

Formatting
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Key Description
C-c C-q C-r Format region.
C-c C-q C-s Format section.
C-c C-q C-e Format environment.
C-c . Mark an environment.
C-c * Mark a section.

Commenting

Key Description
C-c ; Comment a region.
C-u C-c ; Uncomment a region.
C-c % Comment a paragraph.
C-u C-c % Uncomment a paragraph.

Font selection
Key Description
C-c C-f C-b Bold.
C-c C-f C-i Italics.
C-c C-f C-r Roman.
C-c C-f C-e Emphasized.
C-c C-f C-t Typewriter.
C-c C-f C-s Slanted.
C-c C-f C-d Delete font.
C-u C-c C-f Change font.

Running TEX

(Commands:TeX, TeX Interactive, LaTeX, LaTeX Interactive, SliTeX, View, Print, BibTeX, Index, Check,
File, Spell.)

Key Description
C-c C-c Run a command on the master file.
C-c C-r Run a command on the current region.
C-c C-b Run a command on the buffer.
C-c ‘ Go to the next error.
C-c C-k Kill the TEX process.
C-c C-l Center the output buffer.
C-c C-ˆ Switch to the master file.
C-c C-w Toggle debug of overful boxes.
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2.3 Xmaxima
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Xmaxima is currently the default interface environment on Windows. It is based on Tcl/Tk, and acts largely as an
enhanced command prompt. This is probably where most people will start learning Maxima, and it is not a bad place
to start. In order to start this interface in Unix type systems simply typexmaxima in a terminal. From there, you should
get what looks like the terminal interface in a Tk window, with an introductory html document below it. There is also
a pull down menu system. For Windows users, clicking on the icon or menu entry will start this interface.

2.4 TEXmacs

TEXmacs is a WYSIWYG scientific editor, and it has the ability to interface with many computer algebra systems,
including Maxima. (Note: Currently this is program is only available on Unix type platforms, but porting efforts are
underway and in the future it may be possible to use it on Windows.) This program takes advantage of the TEX output
Maxima can produce to format it’s output. To launch Maxima inside of TEXmacs you go up to the menu and select
Insert -> sessions -> maxima. The functionality from this point on is similar to other Maxima interfaces, with the
considerable benefit of well formatted output. This is the most visually appealing way to run Maxima.

2.5 Other Interfaces

There are several other Maxima interfaces efforts underway, but all of these are not currently recommended for general
use. The Symaxx interface is unmaintained and now several years out of date. There are GTK and WxWidgets based
efforts, but while both are functional they will need more development before they are ready for casual use.
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Figure 2.4: TeXmacs with a Maxima Session



CHAPTER 3

The Basics - What you need to know to operate in Maxima

Here we will attempt to address universal concepts which you will need to know when using Maxima for a wide
variety of tasks.

3.1 The Very Beginning

All computer algebra systems have syntactical rules, i.e. a structured language by which the user communicates his/her
commands to the system. Without being able to communicate in this language, it is impossible to accomplish anything
in such as system. So we will attempt to describe herein the basics.

3.1.1. Our first Maxima Session

We will start by demonstrating the ultimate basics:+, −, ∗, and /. These symbols are virtually universal in any
mathematical system, and mean exactly what you think they mean. We will demonstrate this, and at the same time
introduce you to your first session in Maxima. In the interface of your choice, try the following:

GCL (GNU Common Lisp) Version(2.3.8) Wed Sep 5 08:00:22 CDT 2001
Licensed under GNU Library General Public License
Contains Enhancements by W. Schelter
Maxima 5.5 Wed Sep 5 07:59:43 CDT 2001 (with enhancements by W. Schelter).
Licensed under the GNU Public License (see file COPYING)

(%i1) 2+2;
(%o1)

4

(%i2) 3-1;
(%o2)

2

(%i3) 3*4;
(%o3)

12

(%i4) 9/3;
(%o4)

3

29
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(%i5) 9/4;
(%o5)

9
4

(%i6) quit();

Above is our first example of a Maxima session. We notice already several characteristics of a Maxima session:
The startup message, which gives the version of Maxima being used, the date of compilation, which is the day your
executable was created, the labels in front of each line, the semicolon at the end of each line, and the way we exit the
session. The startup message is not important to the session, but you should take note of what version of Maxima you
are using, especially if there is a known problem in an earlier version which might impact what you are trying to do.

Exiting a Maxima Session

You want to be able to get out of what you get into. So the first command we discuss will be the command that gets
you out of Maxima, and while we are at it we will discuss how to get out of debugging mode. Debugging mode is quite
useful for some things, and the reader is encouraged to look to later chapters for an in-depth look at the debugging
mode, but for now we will stick to basics. As you see above,quit(); is the command which will exit Maxima. This
is a bit confusing for new users, but you must type that full command. Simply typingquit or exit will not work, nor
will pressingCTRL-C - if you try the latter you will be dumped into the debugging mode. If that happens, simply type
:q if you are running GNU Common Lisp, or:a if running CLISP. (If in doubt use:q - most binary packages use
GCL at this time.) Here’s an example of what not to do, and how to get out of it if you do:

(C1) quit;

(D1) QUIT
(C2) exit;

(D2) EXIT
(C3)
Correctable error: Console interrupt.
Signalled by MACSYMA-TOP-LEVEL.
If continued: Type :r to resume execution, or :q to quit to top level.
Broken at SYSTEM:TERMINAL-INTERRUPT. Type :H for Help.
MAXIMA> >
Correctable error: Console interrupt.
Signalled by SYSTEM:UNIVERSAL-ERROR-HANDLER.
If continued: Type :r to resume execution, or :q to quit to top level.
Broken at SYSTEM:TERMINAL-INTERRUPT.
MAXIMA> > >:q

(C3) quit();

The first two lines show what happens if you forget the() or typeexit. Nothing major, but you won’t exit
Maxima. CTRL-C causes a few more problems - if you actually read the message, you will see it tells you how to
handle it. In the above example,CTRL-C was hit twice - that is not a proper way to exit Maxima either. Just remember
to use:q to exit debugging andquit(); to exit Maxima, and you should always be able to escape trouble. If you find
youself trying to read a long output going by quickly on a terminal, pressCTRL-S to temporarily halt the output, and
CTRL-Q to resume.
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The End of Entry Character

All expressions entered into Maxima must end with either the ; character or the $ character. The ; character is the
standard character to use for this purpose. The $ symbol, while performing the same job of ending the line, suppresses
the output of that line. This example illustrates these properties:

(%i1) x^5+3*x^4+2*x^3+5*x^2+4*x+7;
(%o1)

x5 + 3x4 + 2x3 + 5x2 + 4x + 7

(%i2) x^5+3*x^4+2*x^3+5*x^2+4*x+7$

(%i3) D2;
(%o3)

x5 + 3x4 + 2x3 + 5x2 + 4x + 7

(%i4) x^5+3*x^4+2*x^3
+5*x^2+4*x+7;
(%o4)

x5 + 3x4 + 2x3 + 5x2 + 4x + 7

(%i5) x^5+3*x^4+2*x^3
+5*x^2+4*x+7;

(%o5)

x5 + 3x4 + 2x3 + 5x2 + 4x + 7

In (C1), we input the expression using the ; character to end the expression, and on the return line we see that D1
now contains that expression. In (C2), we input an identical expression, except that we use the $ to end the line. (D2) is
assigned the contents of (C2), but does not visually display those contents. Just to verify that (D2) does in fact contain
what we think it contains we ask Maxima to display it’s contents on (C3) and we see that the are in fact present. This is
extremely useful if you are working on a problem which has many steps, and some of those steps would produce long
outputs you don’t need to actually see. In (C4), we input part of the expression, press return, finish the expression,
and then use the ; character. Notice that the input did not end until we used that character and pressed return - return
by itself does nothing. You see (D4) contains the same expression as (D1) shown above. To Maxima, the inputs are
the same. This can be useful if you are going to input a long expression and wish to keep it straight visually, to avoid
errors. You can also input spaces without adversely affecting the formula, as shown in (C5).

The (C*) and (D*) Labels

These labels are more than just line markers - they are actually the names in memory of the contents of the lines. This
is quite useful for a number of tasks. Let’s say you wish to apply a routine, say asolve routine, to an expression for
several different values. Rather than retyping the entire expression, we can use the fact that the line numbers act as
markers to shorten our task considerably, as in this example:

(%i1) 3*x^2+7*x+5;
(%o1)

3x2 + 7x + 5

(%i2) solve(D1=3,x);
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(%o2) [
x = −1

3
,x = −2

]
(%i3) solve(D1=7,x);
(%o3) [

x = −
√

73+ 7
6

,x =
√

73− 7
6

]

(%i4) solve(D1=a,x);
(%o4) [

x = −
√

12a− 11+ 7
6

,x =
√

12a− 11− 7
6

]

In this example, we desire to solve the expression 3x2 +7x+5 for x when 3x2 +7x+5 = 3, 3x2 +7x+5 = 7, and
3x2+7x+5= a. (a in this case is an arbitrary constant.) Rather than retype the equation many times, we merely enter
it once, and then use that label to set up the similar problems more easily.

The (E*) Labels

In some cases, particularly when a command needs to assign generated values to variable names, the E labels will be
used. These may be treated like any other maxima variable. Here is an example of E label use:

Custom Labels

You do not need to settle for this method of labeling - you can define your own expressions if you so choose, by
using the : assign operator. Let us say, for example, that we wish to solve the problem above, but would rather call
our equation FirstEquation than D1. We will show that process here, with one deliberate error for illustration of a
property:

(%i5) FirstEquation:3*x^2+7*x+5;
(%o5)

3x2 + 7x + 5

(%i6) solve(FirstEquation=3,x);
(%o6) [

x = −1
3
,x = −2

]
(%i7) solve(FirstEquation=7,x);
(%o7) [

x = −
√

73+ 7
6

,x =
√

73− 7
6

]

(%i8) solve(FirstEquation=a,x);
(%o8) [

x = −
√

12a− 11+ 7
6

,x =
√

12a− 11− 7
6

]
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(%i9) solve(firstequation=a,x);
(%o9)

[]

You see that this process works exactly the same as before. On line (C5), you see we entered the name of FirstE-
quation as lower case, and the calculation failed. These names are case sensitive. This is true of all variables. Later on
you will see cases in Maxima such as sin, where SIN and sin are the same, but it is not safe to assume this is always
true and when in doubt, watch your cases. In general we suggest you use lower case for your maxima commands and
programs - it will make them easier to read and debug.

3.1.2. To Evaluate or Not to Evaluate

Operators in Maxima, such as diff for derivative, are a common feature in many Maxima expressions. The problem is,
while you need to include an operator at a given point in your process, you may not want to deal with the output from
it at that point in the problem. Therefore, Maxima provides the ’ toggle for operators. See the example below for an
example of how this works.

(%i10) diff(1/sqrt(1+x^3),x);
(%o10)

− 3x2

2 (x3 + 1)
3
2

(%i11) ’diff(1/sqrt(1+x^3),x);
(%o11)

d
d x

1√
x3 + 1

3.1.3. The Concept of Environment - Theev Command

All mathematical operations in Maxima take place in an environment, which is to say the system is assuming it should
do some things and not do other things. There will be many times you will want to change this behavior, without
doing so on a global scale. Maxima provides a way to define a local environment on a per command basis, using the
ev command.ev is one of the most powerful commands in Maxima, and the user will benefit greatly if they master
this command early on while using Maxima.

From the top

We will begin with a very simple example:

(%i1) ev(solve(a*x^2+b*x+c=d,x),a=3,b=4,c=5,d=6);
(%o1) [

x = −
√

7 + 2
3

,x =
√

7− 2
3

]

(%i2) a;



CHAPTER 3. THE BASICS - WHAT YOU NEED TO KNOW TO OPERATE IN MAXIMA 34

(%o2)

a

The first line uses the ev command to solve forx without setting variables in the global environment. To make sure
that our variables remain undefined, we check thata is still undefined in line (C2), and it is.

Now lets examine some of the more interesting features of ev. The general syntax of the ev command is ev(exp,
arg1, ..., argn). exp is an expression, like the one in the example above. You can also use a D* entry name or your own
name for an expression. arg* has many possibilities, and we will try to step through them here.

EXPAND(m,n)

Expand is an argument which allows you to limit how Maxima expands an expression - i.e., how high a power you
want it to expand. m is the maximum positive power to expand, and n is the largest negative power to expand. Here is
an example:

(%i1) ev((x+y)^5+(x+y)^4+(x+y)^3+(x+y)^2+(x+y)+(x+y)^-1+(x+y)^-2+(x+y)^-3+(x+y)^-4+(x+y)^-
5,EXPAND(3,3));

(%o1)

1
y3 + 3x y2 + 3x2 y + x3 +

1
y2 + 2x y+ x2 + (y + x)5 + (y + x)4 +

1
y + x

+
1

(y + x)4 +
1

(y + x)5 + y3 + 3x y2 + y2 + 3x2 y + 2x y+ y + x3 + x2 + x

This may be a little hard to read at first, but if you look closely you will see that every power of−3≤ p≤ 3 has
been expanded, otherwise the subexpression has remained in it’s original form. This is extremely useful if you want
to avoid filling up your screen with large expansions that no one can read or use.

Numerical Output - FLOAT and NUMER

When one of the arguments ofev is FLOAT, ev will convert non-integer rational numbers to floating point. NUMER
will do everything that FLOAT will, since FLOAT in invoked as part of NUMER. NUMER also handles variables
defined by the user with the NUMERVAL command, which the FLOAT toggle will leave unevaluated. In order to
evaluate these expressions, you can also use thefloat command.

(%i1) a:9/4;
(%o1)

9
4

(%i2) exp(a);
(%o2)

e
9
4

(%i3) ev(exp(a),FLOAT);
(%o3)

9.487735836358526

(%i4) ev(exp(a*x),FLOAT);



CHAPTER 3. THE BASICS - WHAT YOU NEED TO KNOW TO OPERATE IN MAXIMA 35

(%o4)

e2.25x

(%i5) numerval(b, 25);
(%o5)

[b]

(%i6) a*b;
(%o6)

9b
4

(%i7) ev(a*b,FLOAT);
(%o7)

2.25b

(%i8) ev(a*b,NUMER);
(%o8)

56.25

(%i9) float(a);
(%o9)

2.25

(%i10) float(b);
(%o10)

25

(%i11) float(a*b);
(%o11)

56.25

Specifying Local Values for Variables, Functions, etc.

One of the best things about the ev command is that for one evaluation you may specify in an arg what values are to be
used for the evaluation in place of variables, how to define functions, which functions to evaluate, etc. We will work
through a series of examples here, probably this will be the best way to illustrate the various possibilities of this aspect
of ev.

(%i8) eqn1:’diff(x/(x+y)+y/(y+z)+z/(z+x),x);
(%o8)

d
d x

(
y

z+ y
+

z
z+ x

+
x

y + x

)
(%i9) ev(eqn1,diff);
(%o9)

− z
(z+ x)2 +

1
y + x

− x
(y + x)2
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(%i10) ev(eqn1,y=x+z);
(%o10)

d
d x

(
z+ x

2z+ x
+

x
z+ 2x

+
z

z+ x

)
(%i11) ev(eqn1,y=x+z,diff);
(%o11)

1
2z+ x

− z+ x
(2z+ x)2 +

1
z+ 2x

− 2x
(z+ 2x)2 −

z
(z+ x)2

In this example, we define eqn1 to be the derivative of a function, but use the ’ character in front of the diff operator
to notify Maxima that we don’t want it to evaluate that derivative at this time. (More on that in the ?? section.) In the
next line, we use the ev with the diff argument, which instructs ev to take all derivatives in this expression. Now, let’s
say we want to definey as a function ofz andx, but again avoid evaluating the derivative. We supply our definition
of y as an argument to ev, and in (D3) we see that the substitution has been made. Now, let’s evaluate the derivative
after the substitution has been made. We work as before, except this time we supply both the new definition ofy and
the diff argument, telling ev to make the substitution and then take the derivative. In this particular case, the order of
the arguments does not matter. The case where it will matter is if you are making multiple substitutions - then they are
handled in sequence from left to right.

(need example here, one where the difference is noticeable).

We can also locally define functions:

(%i12) eqn4:f(x,y)*’diff(g(x,y),x);
(%o12)

f (x,y)
(

d
d x

g(x,y)
)

(%i13) ev(eqn4,f(x,y)=x+y,g(x,y)=x^2+y^2);
(%o13)

(y + x)
(

d
d x

(
y2 + x2))

(%i14) ev(eqn4,f(x,y)=x+y,g(x,y)=x^2+y^2,DIFF);
(%o14)

2x (y + x)

(At the moment, ev seems to take only the first argument in the following example from solve: the manual seems
to indicate it should be taking both as a list??)

(%i15) eqn1:f(x,y)*’diff(g(x,y),x);
(%o15)

f (x,y)
(

d
d x

g(x,y)
)



CHAPTER 3. THE BASICS - WHAT YOU NEED TO KNOW TO OPERATE IN MAXIMA 37

(%i16) eqn2:3*y^2+5*y+7;
(%o16)

3y2 + 5y + 7

(%i17) ev(eqn1,g(x,y)=x^2+y^2,f(x,y)=5*x+y^3,solve(eqn2=5,y));
(%o17) (

5x− 8
27

) (
d

d x

(
x2 +

4
9

))
(%i18) ev(eqn1,g(x,y)=x^2+y^2,f(x,y)=5*x+y^3,solve(eqn2=1,y),diff);
(%o18)

2x

(
5x−

(√
47i + 5

)
3

216

)

(%i19) ev(eqn1,g(x,y)=x^2+y^2,f(x,y)=5*x+y^3,solve(eqn2=1,y),diff,FLOAT);
(%o19)

2x
(

5x− 0.00462962962963
(√

47i + 5
)

3
)

Other arguments for ev

INFEVAL - This option leads to an "infinite evaluation" mode, where ev repeatedly evaluates an expression until it
stops changing. To prevent a variable, say X, from being evaluated a way in this mode, simply include X=’X as
an argument to ev. There are dangers with this command - it is quite possible to generate infinite evaluation loops.
For example, ev(X,X=X+1,INFEVAL); will generate such a loop. Here is an example: (need example where this is
useful.)

How ev works

The flow of the ev command works like this:

1. The environment is set up by scanning the arguments. During this step, a list is made of non-subscripted
variables appearing on the left side of equations in the arguments or in the value of some arguments if the value
is an equation. Both subscripted variables which do not have associated array functions and non-subscripted
variables in the expression exp are replaced by their global values, except for those appearing in the generated
list.

2. If any substitutions are indicated, they are carried out.

3. The resulting expression is then re-evaluated, unless one of the arguments was NO-EVAL, and simplified ac-
cording to the arguments. Note that any function calls in exp will be carried out AFTER the variables in it are
evaluated.

4. If one of the arguments was EVAL, the previous two steps are repeated.
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3.1.4. Clearing values from the system - thekill command

Many times you will define something in Maxima, only to want to remove that definition later in the computation. The
way you do this in Maxima is quite simple - using thekill command. Here is an example:

(%i5) A:7$
(%i6) A;
(%o6)

7

(%i7) kill(A);
(%o7)

DONE

(%i8) A;
(%o8)

A

kill is used in many situations, and has many uses. You will see it appear throughout this manual, in different
contexts. There are general arguements you can use, such askill(all), which will essentially start you out in a new,
clean environment. (Add any relevant general kill options here - save kill(rules) for rules section, etc.)

3.2 Common Operators in Maxima

An operator is simply something that signals a specific operation is to be performed. There are many, many possible
operators in Maxima. We will address various operators for specific jobs all throughout this manual - this section is
not comprehensive.

3.2.1. Assignment Operators

In mathematics, we quite often want to declare functions, assign values to numbers, and do many similarly useful
things. Maxima has a variety of operators for this purpose.

: The basic assignment operator. We have already seen this operator in action; it is one of the most common in
maxima.

(%i20) A:7;
(%o20)

7

(%i21) A;
(%o21)

7

:= This is the operator you would use to define functions. This is a common thing to do in computer algebra, so we
will illustrate both how to and how not to do this.
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The right way:

(%i2) y(x):=x^2;
(%o2)

y(x) :

= x2

(%i3) y(2);
(%o3)

4

Several possible wrong ways:

(%i22) y:=x^2;

Improper function definition:

y

-- an error. Quitting. To debug this try DEBUGMODE(TRUE);)

(%i23) y=x^2;
(%o23)

y = x2

(%i24) y(2);
(%o24)

y(2)

(%i25) y(x)=x^2;
(%o25)

y(x) = x2

(%i26) y(2);
(%o26)

y(2)

(%i27) y[x]=x^2;
(%o27)

yx = x2

(%i28) y[2];
(%o28)

y2

(%i29) y(x):=x^2;
(%o29)

y(x) :

= x2

(%i30) y(2);
(%o30)

4
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Look over the above example - it pays to know what doesn’t work. If you recognize the error or incorrect result
you get, it will make for faster debugging.

:: This operator is related to the : operator, but does not function in quite the same way. This is more what a
programmer would refer to as a pointer. The best way to explain is to give you an example of how it behaves:

(%i9) A:3$
(%i10) B:5;
(%o10)

5

(%i11) C:’A;
(%o11)

A

(%i12) C::B;
(%o12)

5

(%i13) C;
(%o13)

A

(%i14) A;
(%o14)

5

You see C points to A, and A is thus assigned the value of B.

! This is the factorial operator.

(%i4) 8!;
(%o4)

40320

!! This is the double factorial operator. This is defined in Maxima as the product of all the consecutive odd (or
even) integers from 1 (or 2) to the odd (or even) arguement.

(%i6) 8!!;
(%o6)

384

(%i7) 2*4*6*8;
(%o7)

384
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sqrt(x) This is your basic square root operator.

(%i13) sqrt(x^2);
(%o13)

|x|

(%i14) sqrt(1/2);
(%o14)

1√
2

(%i15) sqrt(9);
(%o15)

3

Of course, this hardly begins to describe all the operators in the system, but what you see here are some of the
more common and useful ones.



CHAPTER 4

Trig through Calculus

This chapter and the next will probably split into many more - Trig, Algebra, Calculus, Programming, etc,etc,etc. I
just don’t know at this point. These chapters will probably largely be example based. Using things such as ratsimp,
trigsimp, etc.

Here we will discuss Maxima’s ability to handle integration, differentiation, and other related concepts.

4.1 Trigonometric Functions

These operate more or less as you would expect. The following functions are defined by default:

sin Sine asin Arc Sine
cos Cosine acos Arc Cosine
tan Tangent atan Arc Tangent
csc Cosecant acsc Arc Cosecant
sec Secant asec Arc Secant
cot Cotangent acot Arc Cotangent
sinh Hyperbolic Sine asinh Hyperbolic Arc Sine
cosh Hyperbolic Cosine acosh Hyperbolic Arc Cosine
tanh Hyperbolic Tangent atanh Hyperbolic Arc Tangent
csch Hyperbolic Cosecant acsch Hyperbolic Arc Cosecant
sech Hyperbolic Secant asech Hyperbolic Arc Secant
coth Hyperbolic Cotangent acoth Hyperbolic Arc Cotangent

There are a couple wrinkles worth noting - by default, Maxima will not simplify expressions which numerically
are nice fractions ofπ, so there exists a package which may be loaded to allow this called atrig1. Here is an example:

(%i1) acos(1/sqrt(2));
(%o1)

arccos

(
1√
2

)
(%i2) load(atrig1)$
(%i3) acos(1/sqrt(2));
(%o3)

π
4

42
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Maxima is aware of the Half Angle relations, but by default will not use them. There is a variable which can be
set calledhalfangles, and when that is set to true the Half Angle definitions will be used.

(%i4) sin(a/2);
(%o4)

sin
(a

2

)
(%i5) halfangles:true;
(%o5)

true

(%i6) sin(a/2);
(%o6)

√
1− cosa√

2

You should be aware that when solving expressions involving trig functions, not all solutions will be presented.
This is inevitable, since in many cases there are an infinite number - typically one will be displayed. Usually you are
warned when this is happens.

(%i7) solve(sin(x)=%PI/2,x);

SOLVE is using arc-trig functions to get a solution.

Some solutions will be lost.

(%o7) [
x = arcsin

(π
2

)]
There are a few global variables you can set which will change how Maxima handles trig expressions:

• TRIGINVERSES
This can be set to one of three values: ALL, TRUE, or FALSE. The default is ALL

– ALL When set to ALL, both arctfun(tfun(x)) and fun(arctfun(x)) are evaluated to x.

– TRUE When set to TRUE, the arctfun(tfun(x)) simplification is turned off.

– FALSE When set to FALSE, both simplifications are turned off.

• TRIGSIGN
Can be set to TRUE or FALSE. The default is TRUE. If TRUE, for example, sin(-x) simplifies to -sin(x).

4.2 Differentiation

To differentiate an expression, use thediff command.diff(expr,var) differentiates an expression with respect to
the variablevar.

(%i8) sin(x)*cos(x);
(%o8)

cosx sinx

(%i9) diff(%,x);
(%o9)

cos2x− sin2x
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To take a second order derivative, usediff(expr,var,2).

(%i10) diff(sin(x)*cos(x),x,2);
(%o10)

−4 cosx sinx

Differentiation, unlike integration, can be handled in a fairly general way by computer algebra. As a result, you
will be able to take derivatives in most cases. We will show some examples here:

Basic Algebraic Examples:

(%i11) diff(3*x^5+x^4+7*x^3-x^2+17,x);
(%o11)

15x4 + 4x3 + 21x2 − 2x

(%i12) diff((x^2+1)/(x^2-1),x);
(%o12)

2x
x2 − 1

−
2x
(
x2 + 1

)
(x2 − 1)2

(%i13) diff((x^2+1)^5*(x^7-5*x-2)^19,x);
(%o13)

10x
(
x2 + 1

)4 (x7 − 5x− 2
)19 + 19

(
x2 + 1

)5
(

7x6 − 5
) (

x7 − 5x− 2
)18

(%i14) diff(x^(2/3)+x^(5/7),x);
(%o14)

5

7x
2
7

+
2

3x
1
3

Chain Rule Example:
In order to handle the problem of a function which depends in an unknown way upon some variable, Maxima

provides thedepends command. Using it, you can derive general chain rule formulas. It should be noted these
relations are understood only by the diff command - for operations such as integration you must give their dependencies
explicitly in the command.

(%i15) DEPENDS([U],[r,theta],[r,theta],[x,y]);
(%o15)

[U (r,ϑ) , r (x,y) ,ϑ(x,y)]

(%i16) diff(U,x)+diff(U,y);
(%o16)

d
d y

ϑ
(

d
d ϑ

U

)
+

d
d x

ϑ
(

d
d ϑ

U

)
+

d
d y

r

(
d

d r
U

)
+

d
d x

r

(
d

d r
U

)

If we wish to take derivatives with respect to multiple variables, for exampled2

dxdy, the syntax for derivatives is
quite general and we can perform the operation as follows:

(%i17) diff(U,x,1,y,1);
(%o17)

d
d x

ϑ
(

d
d y

ϑ
(

d2

d ϑ2 U

)
+

d
d y

r

(
d2

d r d ϑ
U

))
+

d2

d x d y
ϑ
(

d
d ϑ

U

)
+

d
d x

r

(
d

d y
r

(
d2

d r2 U

)
+

d
d y

ϑ
(

d2

d r d ϑ
U

))
+

d2

d x d y
r

(
d

d r
U

)
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This is the same thing as doing

(%i18) diff(diff(U,x),y);
(%o18)

d
d x

ϑ
(

d
d y

ϑ
(

d2

d ϑ2 U

)
+

d
d y

r

(
d2

d r d ϑ
U

))
+

d2

d x d y
ϑ
(

d
d ϑ

U

)
+

d
d x

r

(
d

d y
r

(
d2

d r2 U

)
+

d
d y

ϑ
(

d2

d r d ϑ
U

))
+

d2

d x d y
r

(
d

d r
U

)

Trigonometric Derivatives:

(%i25) diff(cos(x),x);
(%o25)

−sinx

(%i26) diff(acos(x),x);
(%o26)

− 1√
1− x2

(%i27) diff(tan(x),x);
(%o27)

sec2x

(%i28) diff(atan(x),x);
(%o28)

1
x2 + 1

(%i29) diff(sinh(x),x);
(%o29)

coshx

(%i30) diff(asinh(x),x);
(%o30)

1√
x2 + 1

4.3 Integration

Unlike differentiation, integration cannot be readily expressed in a general way. Maxima is quite capable when it
comes to to such problems, although like all computer algebra systems it has its limits.

In general,integrate is the command most users will use to perform various types of basic integrals. It is
therefore a logical place to begin the introduction.

Beginning with a very basic example:

(%i31) integrate(a*x^n,x);

Is n+1 zero or nonzero?

nonzero;
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(%o31)

a xn+1

n + 1

Even in this basic case, there is a lot going on. The general form of the integrate command for indefinite integrals is
integrate(f(x),x). When Maxima does not have sufficient information to evaluate an integral, it will ask the user
questions. In the above example, for instance, Whether or not n+1 was zero impacted how Maxima would approach
the problem. Above, it evaluated the integral after being told n+1 was not zero. If the same integral is performed again,
this time informing the system that n+1 is zero, the results are different:

(%i32) integrate(a*x^n,x);

Is n+1 zero or nonzero?

zero;

(%o32)

a logx

4.3.1. Theassume Command

As one is working on a long problem session, having to answer the same questions repeatedly quickly becomes
inefficient. Fortunately, Maxima provides anassume command which lets the system proceed without having to
repeatedly inquire at to the state of a variable. This command is actually useful throughout the Maxima system, not
just in integration problems, but since integration is likely where most users will first encounter the need for it we will
discuss it here. Remember, this is the command you will use any time you wish to instruct Maxima to assume some
fact whatever you happen to be doing. You will see this command throughout this book.

We will use the previous integration example as the first illustration of how this process works.

(%i33) assume(n+1>0);
(%o33)

[n > −1]

(%i34) integrate(a*x^n,x);
(%o34)

a xn+1

n + 1

Notice Maxima did not ask any questions, because it was able to find the information it needed in its assume
database. Of couse, for one integral it is simpler to just answer the question, but now if we wish to do another integral
that also depends on this knowledge:

(%i35) integrate((a+b)*x^(n+1),x);
(%o35)

(b + a) xn+2

n + 2

Maxima already knew enough to handle the new integral. Of course, we might not want this asssumption later on,
so we need a way to get rid of it. This is done with theforget command:

(%i36) forget(n+1>0);
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(%o36)

[n > −1]

(%i37) integrate((a+b)*x^n,x);

Is n+1 zero or nonzero?

zero;

(%o37)

(b + a) logx

For multiple rule situationsassume andforget will also take more than one assumption at a time, as in this
example:

(%i38) assume(n+1>0, m+1>0);
(%o38)

[n > −1,m > −1]

(%i39) integrate(a*x^n+b*x^m,x);
(%o39)

a xn+1

n + 1
+

b xm+1

m+ 1

(%i40) forget(n+1>0, m+1>0);
(%o40)

[n > −1,m > −1]

(%i41) integrate(a*x^n+b*x^m,x);

Is m+1 zero or nonzero?

zero;

Is n+1 zero or nonzero?

zero;

(%o41)

b logx + a logx

4.3.2. Definite Integrals

The same basicintegration command is used for definite integrals. Let’s take a basic example:

(%i42) integrate(a+x^3,x,0,5);
(%o42)

20a + 625
4

The basic syntax is apparent:integrate(f(x),x,lowerlimit,upperlimit)
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4.3.3. changevar

Maxima provides a commandchangevar which can make a change of variable in an integral. It has the form
changevar(exp,f(x,y),y,x) What this does is make the change of variable given by f(x,y) = 0 in all integrals
occurring in exp with integration with respect to x; y is the new variable. For example:

(%i43) ’integrate(exp(sqrt(5*x)),x,0,4)+’integrate(exp(sqrt(5*x+1)),x,0,5)+
’integrate(exp(sqrt(z*x)),z,0,4);
(%o43) Z 4

0
e
√

x z dz+
Z 5

0
e
√

5 x+1 dx+
Z 4

0
e
√

5
√

x dx

(%i44) changevar(%,x-y^2/5,y,x);
(%o44)

Z 4

0
e
√

x z dz−
2

R 0
−2

√
5y e|y| dy

5
−

2
R 0
−5y e

√
y2+1 dy

5

If you examine the above case, you see that the two integrals being integrated with respect to x have undergone a
variable, change, while the z dependant integral has not.

4.3.4. Behind the Black Box - Using Specific Approaches

Once a user begins serious work with integration in Maxima, they may find that they want to use other techniques.
Maxima has several functions which allow more power and flexibility. Definite integration will be the first example:

(Need example of where DEFINT fails but ROMBERG succeeds.) Discuss LDEFINT RISCH ILT INTSCE

4.3.5. Other Examples

Since integration is such a major feature, we will include here a fairly extensive collection of examples of integrals.

(%i45) integrate(x,x);
(%o45)

x2

2

(%i46) assume(a>0)$
(%i47) assume(n>0)$
(%i48) integrate(a*x^n,x);
(%o48)

a xn+1

n + 1

(%i49) assume(b>0)$
(%i50) integrate(a*exp(x*b),x);
(%o50)

a eb x

b

(%i51) assume(c>0)$
(%i52) integrate(a*b^(x*c),x);
(%o52)

a bc x

logb c
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(%i53) integrate(log(x),x);
(%o53)

x logx− x

(%i54) integrate(a/(b^2+x^2),x);
(%o54)

a arctan
(

x
b

)
b

(%i55) assume(m>0)$
(%i56) integrate(x^m*(a+b*x)^5,x);
(%o56)

b5 xm+6

m+ 6
+

5a b4 xm+5

m+ 5
+

10a2 b3 xm+4

m+ 4
+

10a3 b2 xm+3

m+ 3
+

5a4 b xm+2

m+ 2
+

a5 xm+1

m+ 1

(%i57) integrate(x/(a+b*x)^n,x);
(%o57)

−
(
b2 (n− 1) x2 + a b n x+ a2

)
e−n log(b x+a)

b2 (n2 − 3n + 2)

(%i58) integrate(x^2/(a+b*x)^n,x);
(%o58)

−
(
b3
(
n2 − 3n + 2

)
x3 + a b2

(
n2 − n

)
x2 + 2a2 b n x+ 2a3

)
e−n log(b x+a)

b3 (n3 − 6n2 + 11n− 6)

(%i59) integrate(1/(x^2-c^2)^5,x);
(%o59)

−35 log(x + c)
256c9 +

35 log(x− c)
256c9 +

105x7 − 385c2 x5 + 511c4 x3 − 279c6 x
384c8 x8 − 1536c10 x6 + 2304c12 x4 − 1536c14 x2 + 384c16

(%i60) integrate(1/(a+b*x^2)^4,x);
(%o60)

5 arctan
(√

b x√
a

)
16a

7
2
√

b
+

15b2 x5 + 40a b x3 + 33a2 x
48a3 b3 x6 + 144a4 b2 x4 + 144a5 b x2 + 48a6

(%i61) integrate(sqrt(a+b*x)/(x^5),x);
(%o61)

−
5b4 log

(
2
√

b x+a−2
√

a
2
√

b x+a+2
√

a

)
128a

7
2

− 15b4 (b x+ a)
7
2 − 55a b4 (b x+ a)

5
2 + 73a2 b4 (b x+ a)

3
2 + 15a3 b4

√
b x+ a

192a3 (b x+ a)4 − 768a4 (b x+ a)3 + 1152a5 (b x+ a)2 − 768a6 (b x+ a) + 192a7



CHAPTER 5

Advanced Mathematics - ODEs and Beyond

5.1 Ordinary Differential Equations

5.1.1. Defining Ordinary Differential Equations

There are three standard ways to represent an ordinary differential equation, such as

x2y′ + 3xy = sin(x)/x,

in Maxima. The simplest way is to represent the derivatives by’diff(y,x),
’diff(y,x,2), etc. The above ordinary differential equation would then be entered as

(%i1) x^2*’diff(y,x) + 3*x*y = sin(x)/x;
(%o1)

x2
(

d
d x

y

)
+ 3x y =

sinx
x

Note that the derivative’diff(y,x) is quoted, to prevent it from being evaluated (to0). The second way is to use
thedepends command to tell Maxima thaty is a functions ofx, making the quotes unnecessary. The above equation
would then be entered as

(%i2) depends(y,x);
(%o2)

[y(x)]

(%i3) x^2*diff(y,x) + 3*x*y = sin(x)/x;
(%o3)

x2
(

d
d x

y

)
+ 3x y =

sinx
x

The third way would be to writey(x) explicitly as a function ofx. The above equation would then be entered
as

(%i4) x^2*diff(y(x),x) + 3*x*y(x) = sin(x)/x;
(%o4)

x2
(

d
d x

y(x)
)

+ 3x y(x) =
sinx

x

Different commands for working with differential equations require different representations of the equations. For the
commandode2 (see subsection5.1.2), it is often more useful to use one of the first two representations, while for the
commanddesolve (see subsection5.1.3) it is required to use the third representation.

50



CHAPTER 5. ADVANCED MATHEMATICS - ODES AND BEYOND 51

5.1.2. Solving Ordinary Differential Equations:ode2

Usingode2

Maxima can solve first and second order differential equations using theode2 command. The commandode2(eqn,depvar,indvar)
will solve the differential equation given byeqn, assuming thatdepvarandindvar are the dependent and independent
variables, respectively. (If an expressionexpr is given instead of an equation, it is assumed that the expression repre-
sents the equationexpr=0.)

(%i5) ode2(x^2*diff(y,x) + 3*x*y = sin(x)/x, y, x);
(%o5)

y =
%C− cosx

x3

If ode2 cannot solve a given equation, it returns the valueFALSE.

Initial and Boundary Conditions

After a differential equation is solved byode2, initial values or boundary conditions can be given to the solution.
The commands for giving the conditions to the solution, however, require that the differential equationnot be given
explicitly as a function of the variable; i.e.,diff(y,x) would have to be used rather thandiff(y(x),x) to denote
the derivative.

For a first order differential equation, the initial condition can be given usingic1. If ode2 returns the general
solution soln to a first order differential equation, the commandic1(soln, indvar=a, depvar=b) will return the
particular solution which equalsb when the variable equalsa.

(%i6) soln1:ode2(x^2*diff(y,x) + 3*x*y = sin(x)/x, y, x);
(%o6)

y =
%C− cosx

x3

(%i7) ic1(soln1, x=1, y=1);
(%o7)

y = −cosx− cos1− 1
x3

For a second order differential equation, conditions can be given as initial conditions, usingic2, or as boundary
conditions, usingbc2. If ode2 returns the general solutionsoln to a second order differential equation, the command
ic2(soln, indvar=a, depvar=b, diff(depvar, indvar)=c) will return the particular solution which equalsb and
whose derivative equalsc when the variable equalsa.

(%i8) eqn2: diff(y,x,2) + y = 4*x;
(%o8)

d2

d x2 y + y = 4x

(%i9) soln2: ode2(eqn2, y, x);
(%o9)

y = %K1 sinx + %K2 cosx + 4x

(%i10) ic2(soln2, x=0, y=1, diff(y,x)=3);
(%o10)

y = −sinx + cosx + 4x

Similarly, if ode2 returns the general solutionsoln to a second order differential equation, the commandbc2(soln,
indvar=a, depvar=b, indvar=c, depvar=d) will return the particular solution which equalsb when the variable
equalsa and which equalsd when the variable equalsc.
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(%i11) bc2(soln2, x=0, y=3, x=2, y=1);
(%o11)

y = − (3 cos2+ 7) sinx
sin2

+ 3 cosx + 4x

ode2 Methods

To solve a given differential equation,ode2 will attempt a series of standard methods for solving differential equations.
These methods will be described below, more in-depth discussions of these techniques can be found in any standard
introductory text on ordinary differential equations (such asElementary Differential Equations and Boundary Value
Problems by Boyce and DiPrima, from which most of these routines were taken).

The first thingode2 will do with a differential equation is determine whether it is first order or second order. For
first order differential equations,ode2 will check to see if the equation falls into one of the following categories, in
which case the equation will be solved appropriately.

Linear. A first order differential equation islinear if it can be written in the formy′ + p(x)y = q(x). In this case,
the solution is given byy = (I(x)+c)/µ(x), whereµ(x) is eP(x) for some antiderivativeP(x) of p(x), I(x) is an
antiderivative ofµ(x)q(x), andc is an arbitrary constant.

(%i12) linode:diff(y,x) + x*y = x^2;
(%o12)

d
d x

y + x y = x2

(%i13) ode2(linode,y,x);
(%o13)

y = e−
x2
2

√
2
√

π i erf
(

i x√
2

)
2

+ x e
x2
2 + %C



Separable. A first order differential equation isseparableif it can be put in the formM(x) = N(y)y′. In this case, an
implicit solution is obtained by integrating both sides ofM(x)dx= N(y)dy. (It may or may not be possible to solve
for y explicitly.)

(%i14) separableode:(3*x^2+4*x+2)=(2*y-1)*diff(y,x);
(%o14)

3x2 + 4x + 2 = (2y− 1)
(

d
d x

y

)
(%i15) ode2(separableode, y, x);
(%o15)

y2 − y = x3 + 2x2 + 2x + %C

Exact. A first order differential equation isexactif it can be put in the formp(x,y)y′ +q(x,y) = 0, wherep(x,y) =
∂M(x,y)/∂y andq(x,y) = ∂M(x,y)/∂x for someM(x,y). In this case, the solution will be given implicitly byM(x,y) =
0. (It may or may not be possible to solve foryexplicitly.)

(%i16) exactode:x^2*cos(x*y)*diff(y,x) + (sin(x*y) + x*y*cos(x*y))=0;
(%o16)

sin(x y) + x2
(

d
d x

y

)
cos(x y) + x y cos(x y) = 0

(%i17) ode2(exactode,y,x);
(%o17)

x sin(x y) = %C
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If the given differential equation can be put in the formp(x,y)y′ +q(x,y) = 0 but is not exact,ode2 checks to see if
there is an integrating factorµ(x,y) which will makeµ(x,y)p(x,y)y′+µ(x,y)q(x,y) = 0 exact, in which case this new
equation will be solved as above.

(%i18) intfactorode:(2*x*y - exp(-2*y))*diff(y,x) + y =0;
(%o18) (

2x y− e−2 y) ( d
d x

y

)
+ y = 0

(%i19) ode2(intfactorode,y,x);
(%o19)

x e2 y − logy = %C

Homogeneous. A first order differential equation ishomogeneousif it can be put in the formy′ = F(y/x). In this
case, the substitutionv = y/x will transform the equation into the separable equationxv′ + v = F(v), which can be
solved as above.

(%i20) homode:diff(y,x) = (y/x)^2 + 2*(y/x);
(%o20)

d
d x

y =
y2

x2 +
2y
x

(%i21) ode2(homode,y,x);
(%o21)

−x y+ x2

y
= %C

Bernoulli. The equationy′+ p(x)y= q(x)yn, n 6= 0,1, is calledBernoulli’s equationwith indexn. The transformation
v = y1−n will transform Bernoulli’s equation into the linear equationv′ +(1−n)p(x)v = (1−n)q(x), which can be
solved as above.

(%i22) berode:diff(y,x) + (2/x)*y = (1/x^2)* y^3;
(%o22)

d
d x

y +
2y
x

=
y3

x2

(%i23) ode2(berode, y, x);
(%o23)

y =
1√

2
5 x5 + %Cx2

General Homogeneous.A first order differential equation is said to begeneral homogeneousof index n if it can
be written in the formy′ = (y/x)G(yxn). In this case, a solution is given implicitly byx = ceI(yxn), whereI(u) is an
antiderivative of 1/(u(n+G(u))) andc is an arbitrary constant. (It may or may not be possible to solve fory explicitly.)

If the differential equation is second order, thenode2 will determine if the equation is linear or not. In the linear
case, when the equation can be writteny′′ + p(x)y′ +q(x)y = r(x), ode2 will try to solve the equation by first solving
the homogeneous part,y′′+ p(x)y′+q(x)y = 0. The general solution of the homogeneous part will be of the formy =
k1y1+k2y2 for arbitrary constantsk1 andk2. If r(x) 6= 0,ode2 will then use variation of parameters to find a particular
solutionyp of the original equation. The general solution of the full equation will then bey = k1y1 + k2y2 + yp. To
solve the homogeneous part,ode2 will check to see if the equation falls into one of the following categories, in which
case the equation will be solved appropriately.

Constant Coefficients.If the differential equation has constant coefficients, and so is of the formy′′ +ay′ +by= 0,
then the solution isy = k1er1x + k2er2x, wherer1 and r2 are the solutions ofr2 + ar + b = 0. In caser2 + ar +
b = 0 has a double root, the solution of the differential equation isy = k1erx + k2xerx. In some cases where the
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equation doesn’t have constant coefficients,ode2 will attempt to use a simple transformation to reduce it to constant
coefficents.

(%i24) ccode1: diff(y,x,2) - 3*diff(y,x) + 2*y=0;
(%o24)

d2

d x2 y− 3

(
d

d x
y

)
+ 2y = 0

(%i25) ccode2: diff(y,x,2) - 4*diff(y,x) + 4*y=0;
(%o25)

d2

d x2 y− 4

(
d

d x
y

)
+ 4y = 0

(%i26) ode2(ccode1, y, x);
(%o26)

y = %K1e2 x + %K2ex

(%i27) ode2(ccode2, y, x);
(%o27)

y = (%K2x + %K1) e2 x

Exact. A second order differential equation isexactif it can be written in the form[ f (x)y′]′+[g(x)y]′ = 0. Integrating
this equation will reduce it to a first order differential equation, which can be solved as above.

(%i28) exactode2: x^2*diff(y,x,2) + x*diff(y,x) - y =0;
(%o28)

x2
(

d2

d x2 y

)
+ x

(
d

d x
y

)
− y = 0

(%i29) ode2(exactode2, y,x);
(%o29)

y = %K2x− %K1
2x

Euler. The equationx2y′′ + axy′ + by= 0 is Euler’s equation. The solution is given byy = k1xr1 + k2xr2, wherer1

andr2 are solutions ofr(r−1)+ar+b= 0. In caser(r−1)+ar+b= 0 has a double root, the solution is given byy=
k1xr +k2 ln(x)xr .

(%i30) eulerode1: x^2*diff(y,x,2) + 4*x*diff(y,x) + 2*y = 0;
(%o30)

x2
(

d2

d x2 y

)
+ 4x

(
d

d x
y

)
+ 2y = 0

(%i31) eulerode2: x^2*diff(y,x,2) + 5*x*diff(y,x) + 4*y = 0;
(%o31)

x2
(

d2

d x2 y

)
+ 5x

(
d

d x
y

)
+ 4y = 0

(%i32) ode2(eulerode1, y, x);
(%o32)

y =
%K1

x
+

%K2
x2

(%i33) ode2(eulerode2, y, x);
(%o33)

y =
%K2 logx + %K1

x2
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Bessel’s Equation. The equationx2y′′+xy′+(x2−ν2)y = 0 is calledBessel’s equationof orderν. Forν = 1/2, the
solution isy= k1sin(x)/

√
x+k2cos(x)/

√
x; for integerν, the answer will bey= k1Yν(x)+k2Jν(x), whereJν andYν are

the Bessel functions of the first and second kind.

(%i34) besselode1:x^2*diff(y,x,2) + x*diff(y,x) + (x^2 - 1/4)*y=0;
(%o34)

x2
(

d2

d x2 y

)
+ x

(
d

d x
y

)
+
(

x2 − 1
4

)
y = 0

(%i35) besselode2:x^2*diff(y,x,2) + x*diff(y,x) + (x^2 - 4)*y=0;
(%o35)

x2
(

d2

d x2 y

)
+ x

(
d

d x
y

)
+
(
x2 − 4

)
y = 0

(%i36) ode2(besselode1, y, x);
(%o36)

y =
%K1 sinx + %K2 cosx√

x

(%i37) ode2(besselode2, y, x);
(%o37)

y = %K2 %Y2(x) + %K1 %J2(x)

ode2 can also handle translates of Bessel’s equation; i.e., differential equations of the form(x−a)2y′′ +(x−a)y′ +
((x−a)2−ν2)y = 0

(%i38) besselode3:(x-1)^2*diff(y,x,2) + (x-1)*diff(y,x) + ((x-1)^2 - 4)*y=0;
(%o38)

(x− 1)2
(

d2

d x2 y

)
+ (x− 1)

(
d

d x
y

)
+
(
(x− 1)2 − 4

)
y = 0

(%i39) ode2(besselode3, y, x);
(%o39)

y = %K2 %Y2(x− 1) + %K1 %J2(x− 1)

If ode2 successfully solves the homogeneous part of an inhomogeneous equation, it then tries to find a particular
solution using variation of parameters.

Variation of Parameters. If y= k1y1+k2y2 is the general solution ofy′′+ p(x)y′+q(x)y= 0, then a particular solution
of y′′+ p(x)y′+q(x)y= r(x) can be found by replacing the arbitrary constantsk1 andk2 with arbitrary functionsu1 and
u2, and looking for a solution of the formy = u1y1 +u2y2. One such solution is given ifu1 andu2 are antiderivatives
of −y2r/(y1y′2−y2y′1) andy1r/(y1y′2−y2y′1), respectively.

(%i40) varparode:diff(y,x,2) + 2*diff(y,x) + y = exp(x);
(%o40)

d2

d x2 y + 2

(
d

d x
y

)
+ y = ex

(%i41) ode2(varparode,y,x);
(%o41)

y =
ex

4
+ (%K2x + %K1) e−x

In case the second order differential equation is not linear,ode2 will check to see if either the dependent variable
or the independent variable is missing, in which case one of the following two methods will be used.
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Missing dependent variable.If the undifferentiated dependent variabley is not present in a second order differential
equation, the substitutionv= y′, v′ = y′′ will reduce the differential equation to first order. This can be solved as above.
Oncev is obtained,y can be obtained by integratingv.

(%i42) noyode:x*diff(y,x,2) + (diff(y,x))^2=0;
(%o42)

x

(
d2

d x2 y

)
+ %DERIVATIVE2 ((y,x,1)) = 0

(%i43) ode2(noyode,y,x);
(%o43)

y =
Z

1
logx + %K1

dx+ %K2

Missing independent variable.If the independent variablex is not present in a second order differential equation,
then making the dependent variabley a temporary independent variable and using the substitutionv = y′, v′ = y′′,
the equation can again be reduced to first order. Since the derivatives are taken with respect tox, however, the new
equation will involve three variables. This can be resolved by noting thatv′ = dv/dx = (dv/dy)(dy/dx) = (dv/dy)v,
and sov′ = dv/dx can be replaced byvdv/textrmdy. This will result in a first order differential equation with dependent
variablev and independent variabley. This can be solved as above. Oncev is obtained (in terms ofy), y is a solution
of the differential equationy′ = v(y), which can be solved as above.

(%i44) noxode: y*diff(y,x,2) + (diff(y,x))^2 = 0;
(%o44)

y

(
d2

d x2 y

)
+ %DERIVATIVE2 ((y,x,1)) = 0

(%i45) ode2(noxode,y,x);
(%o45)

y2

2 %K1
= x + %K2

Information on the Method

Theode2 routine will store information about the method used to solve the differential equations in various variables.
The variablemethod will keep track of the method used to solve the differential equations.

(%i46) ode2(separableode, y, x);
(%o46)

y2 − y = x3 + 2x2 + 2x + %C

(%i47) method;
(%o47)

SEPARABLE

In the case where an integrating factor was used to make a differential equation exact, the variableintfactor will be
the integrating factor used.

(%i48) ode2(intfactorode, y, x);
(%o48)

x e2 y − logy = %C

(%i49) method;
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(%o49)

EXACT

(%i50) intfactor;
(%o50)

e2 y

y

When Bernoulli’s equation or a generalized homogeneous equation is solved, the variableodeindex will be the index
of the equation.

(%i51) ode2(berode, y, x);
(%o51)

y =
1√

2
5 x5 + %Cx2

(%i52) method;
(%o52)

BERNOULLI

(%i53) odeindex;
(%o53)

3

When an inhomogeneous second degree linear differential equation is solved, the variableyp will be the particular
solution arrived at by variation of parameters.

(%i54) ode2(varparode, y, x);
(%o54)

y =
ex

4
+ (%K2x + %K1) e−x

(%i55) method;
(%o55)

VARIATIONOFPARAMETERS

(%i56) yp;
(%o56)

ex

4

5.1.3. Solving Ordinary Differential Equations:desolve

Usingdesolve

Maxima can solve systems of linear ordinary differential equation with constant coefficients using thedesolve com-
mand. The differential equations must be given using functional notation, rather than with dependent variables; i.e.,
diff(y(x),x) would have to be used rather thandiff(y,x) to denote the derivative. The commanddesolve(delist,
fnlist), will solve the system of differential equations given by the listdelist, wherefnlist is a list of the functions to be
solved for.
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(%i57) de1:diff(f(x),x)=diff(g(x),x)+sin(x);
(%o57)

d
d x

f (x) =
d

d x
g(x) + sinx

(%i58) de2:diff(g(x),x,2)=diff(f(x),x) - cos(x);
(%o58)

d2

d x2 g(x) =
d

d x
f (x)− cosx

(%i59) desolve([de1,de2],[f(x),g(x)]);
(%o59)[

f (x) = ex
(

d
d x

g(x)
∣∣∣∣ x=0

)
− d

d x
g(x)

∣∣∣∣ x=0 + f (0) ,g(x) = ex
(

d
d x

g(x)
∣∣∣∣ x=0

)
− d

d x
g(x)

∣∣∣∣ x=0 + cosx+ g(0)−1

]

A single differential equation of a single unknown function can also be solved bydesolve; in this case, it isn’t
necessary to enter them as lists.

(%i60) de3:’diff(f(x),x,2)+ f(x) = 2*x;
(%o60)

d2

d x2 f (x) + f (x) = 2x

(%i61) desolve(de3, f(x));
(%o61)

f (x) = sinx

(
d

d x
f (x)

∣∣∣∣ x=0 − 2

)
+ f (0) cosx + 2x

Initial Conditions

Initial conditions can be specified for solutions given bydesolve using theatvalue command. The conditions, how-
ever, can only be given at0, and must be given before the equations are solved.

(%i62) atvalue(f(x),x=0,1);
(%o62)

1

(%i63) atvalue(g(x),x=0,2);
(%o63)

2

(%i64) atvalue(diff(g(x),x),x=0,3);
(%o64)

3

(%i65) desolve([de1,de2],[f(x),g(x)]);
(%o65)

[ f (x) = 3ex − 2,g(x) = cosx + 3ex − 2]
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desolve Method

The desolve routine uses the LaPlace transform to solve the systems of differential equations. Iff (t) is defined
for all t ≥ 0, then the LaPlace transform off is given byF(s) = L{ f (t)} =

R ∞
0 e−st f (t)dt. The LaPlace transform

has the useful property that a derivative is transformed into multiplication by the variable; ifL{ f (t)} = F(s), then
L{ f ′(t)} = sF(s)− f (0). The LaPlace transform can thus transform a system of linear differential equations into a
system of ordinary equations. (Note, however, that the LaPlace transform will transform multiplication by a variable
into differentiation; ifL{ f (t)} = F(s), thenL{t f (t)} = −F ′(s). The original differential equations need to have
constant coefficients to prevent this.) If this new system can be solved, the LaPlace tranform can be inverted to give
solutions of the original system of differential equations.



CHAPTER 6

Matrix Operations and Vectors

Maxima has many matrix capabilities. Unfortunately it’s vector handling at the time of this writing is not terribly
robust, and the reader is cautioned to use it with care.
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CHAPTER 7

Introduction to Maxima’s Programming Language

This chapter assumes that readers are familiar with the basic ideas of algebraic manipulation from Chapter??, and
know at least one programming language, and wish to use Maxima for more ambitious tasks than can be handled in
a few sequential commands. If you are familiar with Pascal or Algol 60, you will probably find this adequate as a
programming background. Familiarity with Fortran or Basic is less useful.

Maxima’s user-programming language1 is designed to allow you to define program modules orfunctionsfor alge-
braic manipulation. Each module uses zero or more arguments, and returns an algebraic expression. Since numbers
are special cases of algebraic expressions, Maxima’s user-language can be used as a numeric language too. Because
the language is implemented as an interpreter it is usually more general than compiler-based languages, and also tends
to be rather slow in tight inner loops of simple operations, by comparison. It has novel linguistic features, some of
which are illustrated below.

7.1 Some Examples

f1 andf2 defined below, are versions of thefactorial function. Observe the punctuation carefully. Assignment is:,
function definition is:=, statements are separated from one another by, (not terminatedby commas). The labelloop
is set off by a comma as though it were a statement too. We have added indentation to make the programs conform
to what you might expect, but extra spaces and tabs are optional. There is a conditional execution statement (theif)
which has an optionalelse clause.

(C1) f1(x):=if x<1 then 1 else x*f1(x-1)$
(C2) f1(5);
(D2) 120
(C3) f2(x) := block ([temp],

temp:1,
while x > 1 do (

temp:x*temp,
x:x-1), /*end while*/

temp)$
(C4) f2(5);
(D4) 120

Observe the simplicity of using Maxima compared to, say, Pascal. There is no need to write adriver or main
program with input or output commands. The input is provided through function application on an argument, and the
output is the displayed value.

1The system-programming language used for implementing Maxima namely LISP, is quite different. If you wish to see how Maxima was
constructed, you need to know LISP to understand the source code.
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Every command or function in Maxima has a value, and may, in addition, have some side-effects, such as the
setting of variables, or the printing of messages.

Theblock construction illustrated above is analogous to a procedure declaration. The first part of it is a list of
local variables, and following that, expressions which are evaluated in order. Certain expressions or commands make
sense only within a block, not at Maxima’s command level: these are labels,return s andgo s. The semantics of each
of these commands conforms to the usual intuitive meaning. If the last statement in ablock does not cause a transfer
of control, andexecution falls through the bottom, the value returned from theblock is the value of the last expression
evaluated.

7.2 Unconventional Conditionals

The next example shows a function with a side-effect, but the major point is to illustrate some subtleties which you
may not have thought about in conditional statements (if-then-else ).

If you were asked,Is A greater than B, it would seem you could respond eitheryesor no. In your conventional
programming language, certainly, that would be a reasonable assumption. But really, wouldn’t it be appropriate in
some circumstances for you to answer,How should I know??

That option is preserved in Maxima. If the flagprederror is set totrue, the default, and if Maxima is unable
to evaluate a predicate, it signals an error, and unless directed otherwise, returns control to the top-level Maxima
command monitor. However, if theprederror flag isfalse, execution continues to the next statement, ignoring both
then andelse clauses!

This is illustrated below:

(C5) test(x,y):=block([],
if x > y then print(x, "is greater than", y)

else print(x, "is not greater than", y),
return(alldone))$

(C6) test(4,3);
4 is greater than 3
(D6) alldone
(C7) test(3,4);
3 is not greater than 4
(D7) alldone
(C8) test(y^2+1,-y);
MACSYMA was unable to evaluate the predicate:
ERREXP1
#0: test(x=y^2+1,y=-y)
-- an error. Quitting. To debug this try DEBUGMODE(TRUE);)
(C9) prederror:false$
(C10) test(y^2+1,-y);
(D10) alldone

Note that no message was printed for lined10, but the return value,alldonewas displayed.

7.3 Assumptions

What do YOU think? Isy2 + 1 > −y ? For this question to make sense, both sides of the inequality must be in the
same ordered domain. We do not know, offhand, whethery can assume values which are matrices, complex numbers,
sets, or even programs!

If y were known to be real, or more specifically, positive real, a program could try some deduction. Maxima has
some features of this nature, as illustrated below.

(C11) assume(y>0);
(D11) [y > 0]
(C12) test(y^2+1,-y);
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2
y + 1 is greater than - y
(D12) alldone

If we wish Maxima to forget that assumption,

(C13) forget(y>0);
(D13) [y > 0]

7.4 Arbitrary Numbers of Parameters

Ambitious packages of programs have been written by many Maxima users. Sometimes the requirement that a com-
mand has a fixed number of arguments causes discomfort2. It is possible to write a Maxima program which counts
the number of arguments it is given, sets default values for others, and does any number of clever things. A simple
example is shown below. Note the way theleft-hand-sideof the:= is set up.

(C14) prog3([l]) := block( [],
print ("l is bound to", l, "and l[1] is" ,l[1]),
return(length(l)))$

(C15) prog3(a,b,c,d);
l is bound to [a, b, c, d] and l[1] is a
(D15) 4
(C16) prog3(a,b);
l is bound to [a, b] and l[1] is a
(D16) 2

7.5 Arrays

Arrays are a useful data structure, and are provided in most programming languages. Maxima provides arrays, but
does not require that they be declared, or that they have numeric (integer) index-sets. Rather than writing a program
to fill up an array and then iterating through all elements, sometimes it is easier to describe a program to generate
elements as they are called for. Such array-associated functions are often quite convenient. The usual way you set
them up is to provide specific values for certain index values, and then let others be assigned as needed. Note carefully
the use of:= and:.

(C17) a[4]:4*u;
(D17) 4 u
(C18) a[22/7]:%pi;
(D18) %PI
(C19) a[x]:mystery;
(D19) mystery
(C20) a[h]:=cos(h);
(D20) a := COS(h)

h
(C21) a[3];
(D21) COS(3)
(C22) a[x+1];
(D22) COS(x + 1)

You might wonder what the value ofa is, after all this. Most disappointing:

(C23) a;
(D23) a

2The language Pascal does not allow you to define a functionf which can be used with a variable number of actual parameters, although the
Pascal design includes built-in procedures with variable numbers of arguments (write for example).
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The information that you are after is available this way:

(C24) arrayinfo(a);
22

(D24) [HASHED, 1, [3], [--], [4], [x], [x + 1]]
7

The list of information supplied indicates several aspects of the array. It ishashed: uses the data-structure of a
hash-table for storage (this is a common encoding trick discussed in data structure texts). The number of subscripts is
1. The specific indexes for which it has recorded values are listed. The array-associated function defined on linec20
can be displayed bydispfun.

7.6 Iteration

For loops provide the major iteration facility in Maxima. Three examples which illustrate variants of this are the
factorial functions below:

(C25) f3(n) := block([temp],
temp:1,
for i:1 thru n do temp : temp*i,
return(temp))$

(C26) f4(n) := block([temp],
temp:1,
for i:n step -1 thru 1 do temp : temp*i,
return(temp))$

(C27) f5(n) := block([temp],
temp:1,
for i:n unless i <= 1 do (temp : temp*i , i:i-2),
return(temp))$

Decrementingi by 2 in the previous program was needed because the default step size of 1 is added toi each time
through.F5 is certainly a perverse program. Incidentally,return s from within afor exit from the loop, and not from
the enclosingblock. It is important to note that one can group a collection of statement to bedonetogether with
parentheses, as illustrated inf5.

7.7 Serious Business

Most serious users of Maxima find that they are repeatedly using the same programs, and need to save them for another
day. Some users also find they rarely get the programs or the data quite right the first time, and would rather type these
things in to a text editor, and have Maxima gobble the text up from a file rather than the keyboard. Publication quality
programs require comments and other features you are unlikely to want to type into Maxima interactively.

Some people perfect a function or get an algebraic expression correct by typing definitions and commands into a
file, say,newstuff, using an editor such asvi oremacs and then within Maxima typebatch(newstuff);. If your file-
name has funny characters like periods or slashes, you must use quotes. For example,batch("/usr/local/maxima/demo.begin").

Maxima then reads the statements the file, assigning labels etc., and if there are syntax or other errors, prompts for
help from the keyboard. If you want it to continue on to the next line after an error, typebatcon(true);.

Reading very large text files of programs and data can be slow usingbatch, and if you are not changing the
text, you might prefer saving your environment in another way. You can usesave(savedstuff,all); to save every
named or labelled object in a Maxima system, on the filesavedstuff in your working directory. (You better have
write-permission or you’ll get an error message.) Another time you can start up from where you left off by typing
loadfile(savedstuff); into a fresh Maxima. You can load several saved files into a single system. Naturally if the
files contain items with identical names, there is a potential for conflict. These will be resolved in favor of the last item
read in.

If you want to save only some material you have produced, say only the functions defined and the values of
variables x, y, and z, you can type



CHAPTER 7. INTRODUCTION TO MAXIMA’S PROGRAMMING LANGUAGE 65

save(savfunxyz,functions,x,y,z);

A neat way to save a useful section of your environment is to (carefully) usekill to remove useless items first,
and then saveall that is left. Doingkill(labels,...) after first making sure that any useful result also has a name
other than a c or d-label is sometimes a good start. You generally should not save every computation, since disk space
is not infinite.

7.8 Hardcopy

If you print out the files produced bysave to show to your colleagues who are as yet unconvinced of the merits
of Maxima you will be disappointed. While such files areASCII character text, they do not make easy reading for
persons uninitiated in various arcane matters.

What you might want to do, then, is store human-readable versions of your output on a file. This is especially
useful if you have a display terminal, or a slow hardcopy printer. Maxima provides a way of opening a file for echoing
both input and output of the system. The commandwritefile(fn); where fn is a filename, starts the echoing, and
closefile(); stops the echoing. If you want the output to be human-readable after being run through a typesetting
program (TEX, for example), you can experiment with the output produced by settingtypeset : true. (Suggestion:
gcprint : false is a good idea.)

7.9 Return to Arrays and Functions

Maxima provides a fascinating trick: arrays of functions. Imagine an array, each of whose elements is a function. For
example, Legendre polynomials have an index, and an argument. Thus we can refer toP4(z2). Just as arrays can have
an associated function, function-arrays can have such an associated function.

Because we like to show off occasionally, and typesetting can be done by the Maxima system, we illustrate this
feature here. This was produced by saving output in a file and running it through TEX.

(%i31) p[n](x):=ratsimp(1/(2^n*n!)*diff((x^2-1)^n,x,n));
(%o31)

pn(x) :

= RATSIMP

(
1

2n n!
DIFF

((
x2 − 1

)n,x,n
))

(%i32) p[4];
(%o32)

LAMBDA

(
[x] ,

35x4 − 30x2 + 3
8

)
(%i33) p[4](y+1);
(%o33)

35 (y + 1)4 − 30 (y + 1)2 + 3
8

The lambda(λ) notation for a raw function of one variable appears on linec29. This notation comes from the
λ-calculus used to describe the programming language LISP, and illustrates the fact that Maxima can talk about such
structures. You can generally ignore this fact, however.

7.10 More Useful Examples

As has been indicated earlier, procedures in Maxima can be used for almost any classical programming purposes (e.g.
numerical techniques, combinatorial search). We have already indicated some differences from a purely numerical
language, such as FORTRAN. We have seen that in Maxima there are no required type declarations, and floating-point



CHAPTER 7. INTRODUCTION TO MAXIMA’S PROGRAMMING LANGUAGE 66

numbers, whilecontagiousin the sense that mixed-mode (floating-point + integer) is converted to floating-point, do
not necessarily arise from certain calculations. For example,sin(3) normally results insin(3) in Maxima rather
than its floating-point equivalent.sin(3.0) will, however, return a floating-point number. The numerical subroutine
below, a Newton’s method zero-finder sets the flagnumer to true to force Maxima to convert most expressions free
of indeterminates to numbers.

This program uses Newton’s method to find a zero of the expressionexp which depends on the variablevar. The
iteration starts withvar=x0 and terminates when the expression, evaluated at the trial-point, has absolute value less
thaneps. The derivative ofexp is computed algebraically, and its value is computed at various points as the search is
being conducted:

(C1) newton(exp,var,x0,eps):= /* 1 */
block([xn,s,numer], /* 2 */
numer:true, /* 3 */
s:diff(exp,var), /* 4 */
xn:x0, /* 5 */

while abs(subst(xn,var,exp)) > eps do
xn:xn-subst(xn,var,exp)/subst(xn,var,s),

return(xn) ) /* 8 */$

This procedure for Newton’s method uses an explicit expression for the first argumentexp (e.g.sin(x)*erf(2*x)-%ex̂).
It is not a function name, e.g.f as we used before. The use of such an expression is straightforward and probably the
best way for a beginner. The resulting program is somewhat verbose, because, as illustrated in lines 6 and 7 above, it
is necessary to substitute values for variables in the expression and its derivative,s, to get numbers. Note the setting
of numer on line 3 to assure that theif statement on line 6 would get numerical values for its test. The rest of the
procedure is the classical Newton iteration. The advantage of this procedure over a purely numerical one is that it takes
advantage of the ability to compute the derivative ofexp algebraically and automatically, once, before evaluating it at
any point.

Another item to observe here is the use of comments in the text of programs which arebatch ed in to the system.
/* This is a comment */ .

There are often many different ways of expressing the same computation, and some of them may be substantially
more convenient or efficient than others. While it may not make much of a difference in efficiency in this case, the
following revision of thenewton procedure illustrates some techniques you may find useful in Maxima.

(C2) newton(exp,var,x0,eps):= /* 1 */
block([ xn:x0, s:diff(exp,var), numer:true], /* 2 */

define(f(var), exp), /* 3 */
define(fprime(var),s), /* 4 */

loop, if abs(f(xn)) < eps then return(xn), /* 5 */
xn: xn - f(xn)/fprime(xn), /* 6 */
go (loop) ) /* 7 */ $

Observe the list of local names at the beginning of theblock, which are initialized at the same time they are
declared on line 2. Lines 3 and 4 are interesting because they define two new functions,f andfprime each to have as
their bodies, the values ofexp ands. The Newton iteration is more easily observed in functional rather thansubstitution
notation. An even smaller version ofnewton could be defined by using a single function forexp/diff(exp,var).

Let us try this last function:

(C3) h:expand((x-1)*(x-3)*(x-5));
3 2

(D3) x - 9 x + 23 x - 15
(C4) newton(h,x,3.5,1.0e-10);
(D4) 2.999999999994028

You might wonder how many iterations that took. One way is to use the very convenient debugging feature
provided by Maxima which allows you to watch the assignment of values to variables. You set the variablesetcheck
to a list of the variables you wish to watch. (orall to watch all the variables.)
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(C5) setcheck:[xn]$
(C6) newton(h,x,3.5,1.0e-10);
xn set to 3.5
xn set to 2.923076923076923
xn set to 3.000228597554008
xn set to 2.999999999994028
(D6) 2.999999999994028

(That message[*flonum: ...] is a message from the garbage collector, mentioned in Section??.)
That tells us that only three iterations were needed in this case.
We claimed that two functions were defined in running this program. To display a function using the same syntax

that you would use to type it in, you use thegrind3 command.

(C7) grind(fprime);
Error: cursorpos doesn’t know position
Fast links are on: do (si::use-fast-links nil) for debugging
Error signalled by MACSYMA-TOP-LEVEL.
Broken at ERROR. Type :H for Help.

7.11 Part Hacking

An important tool for applications programs in Maxima the ability to extract and test parts of expressions. These are
used for the definition or extension of algorithms which do various conditional manipulation of formulas. For example,
you can write a symbolic differentiation algorithm for expressions by applying the rules below:

d
dx

x = 1
d
dx

y = 0 (y 6= x) (1)

d
dx

(u + v) =
d
dx

u +
d
dx

v (2)

d
dx

(u · v) = v
d
dx

u + u
d
dx

v (3)

The technique we shall consider for implementing a version of the differentiation program is to take the expression
apart using thepart command, and use the rules above to guide the manipulation.

First, we check to see if the expression is an atom (e.g. number, variable). Thus we begin our differentiation
program as follows:

newdiff(expr,var):=
if atom(expr)=true then

(if expr=var then 1
else 0)

This fragment implements both parts of rule 1. If theif statement falls through to theelse clause, then we have
a composite expression. We then check what its leading operator is by selecting its zerothpart via part(expr,0).
Based on its value we apply the appropriate rule.

else if part(expr,0)=}+} then
newdiff(part(expr,1),var)

+ newdiff(part(expr,2),var)
else if part(expr,0)=}*} then

part(expr,2)*newdiff(part(expr,1),var)
+ part(expr,1)*newdiff(part(expr,2),var)

else ’newdiff(expr,var)$

3When computers were slow and programs were large, reformatting programs took a long time. The name of a program at MIT togrind out
LISP function definitions wasgrindef. The name was carried over to Maxima. Now, most LISP systems call this reformattingprettyprinting.
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Note the last clause which returns a ’newdiff form, that is, quoted, as a result when the program doesn’t know how
to handle the leading operator. With some thought, you should now be able to extend newdiff to accommodate
expressions includingsin andcos as well as sums and products with more than two terms. (The Maxima language
does not at the moment have acase statement, which would make this particular program look better.) Is this stiil true

????

7.12 User Representation of Data

There is norecord or structuredata-typeconstructorin Maxima but there is a way of doing something similar. If
you have used a language like Pascal which has such a feature, you may appreciate its usefulness. Modern dialects
of LISP use such structures, but when Maxima was first designed and initially implemented (in 1967), this was not in
widespread use. It also influenced the user-level programming language.

It is natural to have to deal with collections of information in writing programs. For example, you might wish to
provide as input or output data, a pair of expressions representing a lower and an upper bound on a formula. One way
of handling this is by making up a newfunctionname, saybounds and using it as though it were a record designator
or constructor, but never associating it with an algorithm. Thusbounds(1,x) could be an expression representing the
ordered pair< 1,x >. Another example would be the use ofinteger_vector(1,3,5,7) to designate a sequence
(presumably of arbitrary length, in general), of integers. There is a built-in form in Maxima namely alist, which can be
used to deal with such collections. It is part of the LISP heritage indicated earlier that there was initially only one type
of structure: lists of any length or element type in Maxima. A list, when printed, looks like square-brackets enclosing
a sequence of items. Thus you could express the bounds above as [1,x ]. However, if you used lists for all collections,
you would not know, on the face of it, whether [1,2] was an instance ofbounds or integer_vector. Maxima
allows you to designate functions you intend to treat as lists, although you can use a differentheaderlike bounds
with each different type. Maxima makes available certain built-in functions which can then be used on such list-like
constructions such asinteger_vector. These are declared by, for example,declare(integer_vector,list).
The built-in operations includecons, append, member, endcons, map, rest.
list2:cons(element,list1) returns a (new)list2 which has the given element inserted at the beginning of
list1; List1 andlist2 have a commonsharedtail.
list3:append(list1,list2) returns a (new)list3 which is a combination of the two lists, sharing a common tail
with list2. Member(element,list) returns true or false depending on a test for membership.
Endcons(element,list) returns an (unshared) list where the given element has been attached to the end of given list
Map(fn,list) returns a new list where each element has had the function fn applied to it in turn.
Rest(list,n) returns the part of the list beginning n items from the front.

These functions are parts of the fundamental repertoire of the programming language LISP.
The use of list-like objects should be considered whenever you are dealing with a collection of elements: a set of

coordinates, a series of coefficients, a system of equations, a set of solutions, etc.
Independent of thewhole listoperations above, Maxima has some selection and alteration operations which are

available on the same collections of data by the use of a numeric index. If you wish to use these indexing facilities,
as we will illustrate for the notion ofcomplex below, youdeclare(complex,list). Then, if you define a complex
number byx:complex(3,4) meaning thatx has real part 3, and imaginary part 4, the notationx[1]:10; is supported,
and changes the value ofx to complex(10,4). The declaration explains to the Maxima system that the data structure
for complex will be implemented (in effect) as a list of items, and should be decomposable using the semantics of the
Maxima list-handling commands. In fact, both selection and alteration is supported, and if you set the notation up by
(real:1,imag:2)$ you can use the following command:x[imag]:-x[imag] to changex to its complex conjugate.

An important caution must be observed. When Maxima deals with compound structures, they are usually not
recopied, and if there are two names for the same object and the object is changed, then both names refer to the changed
object. If x andy refer to the samecomplex number, then changes tox[real] are also made to the corresponding
component ofy. If these items are to be kept separate,x:copylist(y); will give x a different representation, but
whose value is the same asy ’s. You can then change their components separately.

Maxima’s built-in lists mentioned earlier, which use square-brackets, can be altered and selected by indexing.
There are two other compound structures in Maxima which we mention here, which may be useful for collections

of data: arrays and matrices. The matrix form is useful for two-dimensional rectangular tables of data. The matrix
data format is supported by a number of special commands oriented toward the conventional interpretation of matrices
in mathematics: inverses, determinants, etc. Matrices can be used for other kinds of data, but you should be cautious
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about using them in a manner that is too far distant from the conventional: arithmetic operations in Maxima in
particular, have already been defined.

Arrays are unusual in their flexibility in Maxima. They are usually treated as global tables, although they can be
declared to be local to a function; they cannot be passed around as parameters as is the case with matrices. The names
of arrays may be passed from program to program, but the data itself is not recopied, nor is it convenient to even
make a copy of the data into another array.Hashedarrays are particularly ingenious, and have been illustrated earlier.
Functions can be associated with arrays to provide new values for entries as they are required.

At this point you should be able to make use of the Maxima manual to learn more details for representation of new
data types as you develop your application.

The true programming buff may also be interested in the macro-expansion capabilities of Maxima and its extensible
syntax. At this point we would discourage the use of these facilities by novices, but encourage their use by persons
willing to experiment in providing the most versatile user-oriented packages within the Maxima framework.

There is acompilationfacility which allows users to translate Maxima code into potentially faster running code.
Since most of the time in most programs is used by calls to LISP programs, this is usually ineffective. In general, this
should be avoided by novices and most experienced users, since time spent on this is more wisely spent on mathemati-
cal restructuring of the solution method, or (in the case of primarily numerical computation), using a numerical library
routine written in a suitable language.



CHAPTER 8

Graphics and Forms of Output

In addition to some options with respect to the mathematical output from Maxima on the command line, the system
is also capable of interfacing with external programs to provide graphing capabilities. You can also save Maxima
sessions to reload later.

8.1 Options on the Command Line

While for normal use the default settings are likely to be preferable, Maxima allows you to set some options with
regards to how output is returned.

8.1.1. 1D vs. 2D

The default output Maxima gives you when you evaluate an expression is 2D output, which basically means you have
some visual feedback on the structure of things like fractions and integrals as ascii art, and the output expression is not
one string. Normally this is a good thing, but if for any reason you wish to turn that feature off, it is quite possible to do
so. Maxima has an internal variable regulating this feature calledDISPLAY2D. Ordinarily it is set to TRUE, providing
the typical ascii Maxima output you would get in a terminal session. Setting it to FALSE will cause returns to be a
single string. Here is an example:

(C1) 2*y*3*x/(4*x+y+3/4);
6 x y

(D1) -----------
3

y + 4 x + -
4

(C2) DISPLAY2D:FALSE;
(D2) FALSE
(C3) 2*y*3*x/(4*x+y+3/4);
(D3) 6*x*y/(y+4*x+3/4)

One important note here is that if you only wish to change the dimension of your output for one entry, you must
set this variable by hand both before and after the command - i.e.,ev(2/3,DISPLAY2D:FALSE) will not result in2/3
unless the DISPLAY2D:FALSE command has already been entered - ev will not use it in its evaluation.

8.1.2. TeX Strings as Output

As you probably already know, Maxima is able to output expressions in TeX format. This ability is used transparently
in several places, but you can also request this output manually, using thetex(expression) command.

70
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(C5) A1:integrate(2*x+x^3+3*x^2,x);
4

x 3 2
(D5) -- + x + x

4
(C6) tex(’integrate(sin(x)/(2*x+x^3+3*x^2),x));
$$\int {{{\sin x}\over{x^{3}+3\>x^{2}+2\>x}}}{\>dx}$$
(D6) FALSE
(C7) tex(A1);
$${{x^{4}}\over{4}}+x^{3}+x^{2}$$
(D7) FALSE

This is useful if you are writing a paper without the benefit of Emaxima and wish to include a Maxima result - the
above can be pasted directly into a LaTeX environment.

8.1.3. Writing a Session to a File

This is actually a bit tricky, especially if you decide halfway through a session you wish to make a record of it.
Fortunately, however, there are some tools you can use.

Note: Need to figure out the subtlties of save()

Writefile

The basic command you will want to start running when you want to record a session. The syntax works like this:
writefile("/home/user/maxima sessionoutput.txt")$

This will record the entire session into a text file calledmaximasessionoutput.txt in the/home/user directory.
If you wish close this file, you simply use the commandclosefile("/home/user/maxima sessionoutput.txt")$
These files are not loadable as commands - it is merely a transcript of a session as it occurred. This is useful for basic
text documentation preperation, or just basic saving of a session for printing.

If you wish to record lines that were entered before you began writing the file to disk, you can use a command
calledPLAYBACK to get them into the record. (Discuss playback options here.)

Creating BATCHable files - Stringout

If the user wishes to create a file containing session information which may be loaded again into the system using the
BATCH, thenSTRINGOUT is the command you want to use. There are several choices here - you can save specific input
(listing C labels), include all C input lines by supplying the arguement INPUT, all of the functions you have defined by
supplying the argument FUNCTIONS, and also all the values you have defined by supplying the arguement VALUES.
Since this is potentially quite important in the creation of packages and specialized invironments, we will go into this
with some detailed examples.

Let’s imagine we want to create a package to calculate the volume of a cube, with certain default values in place.
We begin by entering these commands in Maxima:

(C1) defaultlength:35$
(C2) defaultheight:45$
(C3) defaultwidth:65$
(C4) volume(length,width,height):=length*width*height;
(D4) volume(LENGTH, width, height) := LENGTH width height
(C5) defaultvolume:volume(defaultlength,defaultwidth,defaultheight)$
(C6) defaultvolume;
(D6) 102375

Of course, the last line is not strictly necessary, but it will serve to illustrate the difference between various options.
Now, as a first example we will save all the lines of input to the file cube.mac:

(C7) stringout("cube.mac",INPUT);
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(D7) /home/user/cube.mac

Notice the return from this command is the directory where the file is located. If we look at the contents of that
file:

defaultlength:35$
defaultheight:45$
defaultwidth:65$
volume(LENGTH,width,height):=LENGTH*width*height;
defaultvolume:volume(defaultlength,defaultwidth,defaultheight)$
defaultvolume;

We see that this is the series of commands we entered. If we were to load this file with thebatch command
(reference this somewhere) we would get precisely the same thing we got before. Now let’s try the FUNCTIONS and
VALUES arguements:

(C8) stringout("cubefunctions.mac",FUNCTIONS);
(D8) /home/user/cubefunctions.mac
(C9) stringout("cubevalues.mac",VALUES);
(D9) /home/user/cubevalues.mac

And we see the contents of those files are:

cubefunctions.mac

volume(LENGTH,width,height):=LENGTH*width*height;

cubevalues.mac

defaultlength:35;
defaultheight:45;
defaultwidth:65;
defaultvolume:102375;

So those are the basics of how output works. Experiment a little before you begin creating batch files, so you know
in more detail what is saved and what isn’t by various options. In the case of FUNCTIONS, the following will tell you
what you have defined:

(C10) DISPFUN(ALL);
(E10) volume(LENGTH, width, height) := LENGTH width height
(D10) DONE

You will also want to examine theVALUES variable and the use of thePACKAGEFILE variable.
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8.2 Graphics

Maxima has, via external programs, the ability to produce 2D and 3D graphs. The information will also be recorded
in a file called maxout.openmath. The information in that file will always be the raw openmath format data of the last
plot command.

8.2.1. 2D function plotting

2D graphs are produced with theplot2d command. Perhaps the simplest way to introduce this command is to show
it in action.

plot2d([sin(x),cos(x),tan(x)],[x,0,2*%Pi],[y,-1,1]);

These are just the basics - there are many options which can be set, but most of them are part of an overall plot
options system which we will discuss later. In the examples section at the end of this chapter we will show some more
2D plots with various options set.

8.2.2. 3D Function Plotting

This works just about like the 2D plotting, only you need to supply the proper parameters. Here again an example is
the best teacher.

Plot3d(r^.33*cos(th/3),[r,0,1],[th,0,6*%pi],[’grid,12,80],
[’transform_xy,polar_to_xy],[’view_direction,1,1,1.4],[’colour_z,true],
[gnuplot_pm3d,true], [gnuplot_preamble,"set pm3d at s;unset surface"]);
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8.3 Plot Options

Maxima defines a list, calledPLOT_OPTIONS, which controls most of the behavior of Maxima’s plotting options. There
are two ways of setting these options - you can set an option globally, using theSET_PLOT_OPTION command1, or
supply the new options as arguements to a plot command. If you want to check what your global options are currently
set at, you can just typePLOT_OPTIONS; and the current state of the system will be listed.

(%i1) PLOT_OPTIONS;
(%o1) [[x, -3, 3], [y, - 3, 3], [t, - 3, 3], [GRID, 30, 30],
[VIEW_DIRECTION, 1, 1, 1], [COLOUR_Z, FALSE], [TRANSFORM_XY, FALSE],
[RUN_VIEWER, TRUE], [PLOT_FORMAT, GNUPLOT], [GNUPLOT_TERM, DEFAULT],
[GNUPLOT_OUT_FILE, FALSE], [NTICKS, 10], [ADAPT_DEPTH, 10],
[GNUPLOT_PM3D, FALSE], [GNUPLOT_PREAMBLE, ],
[GNUPLOT_CURVE_TITLES, [DEFAULT]], [GNUPLOT_CURVE_STYLES,
[with lines 3, with lines 1, with lines 2, with lines 5, with lines 4,
with lines 6, with lines 7]], [GNUPLOT_DEFAULT_TERM_COMMAND, ],
[GNUPLOT_DUMB_TERM_COMMAND, set term dumb 79 22], [GNUPLOT_PS_TERM_COMMAND, se#
t size 1.5, 1.5;set term postscript eps enhanced color solid 24]]

OK, let’s look at each of these options.

• [x, - 3, 3] - This defines the X range. In order to change this range globally, use a command of the form
SET_PLOT_OPTION([x,-5,5]);

1Setting an option globally only changes the option for the current Maxima session - upon restart, the original defaults will be restored.
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• [y, - 3, 3] - This defines the Y range. In order to change this range globally, use a command of the form
SET_PLOT_OPTION([y,-5,5]);

• [t, - 3, 3] - t is the default range for the parameter in parametric plots. In order to change this range globally,
use a command of the formSET_PLOT_OPTION([t,-5,5]);

• [GRID, 30, 30] - This controls, in 3D plotting, the number of points used to draw the figure. The function
is only calculated at a certain number of points - after that, linear approximations are drawn. Globally, usee a
command of the formSET_PLOT_OPTION([GRID,40,35]);

• [VIEW_DIRECTION, 1, 1, 1] - This option is specific to the case when the plot command outputs directly to
postscript in 3D(SeePLOT_FORMAT.) It determines the direction from which the ’camera’ looks at the function,
which is along a line parallel to the line fromVIEW_DIRECTION to the origin. It only needs to be set in the case
of postscript output; it is ignored otherwise. Globally, use a command of the formSET_PLOT_OPTION([VIEW_
DIRECTION,1.4,1.4,1.4]);

• [COLOUR_Z, FALSE] - This refers also to the postscript output - if set to TRUE it provides a little color shading
in the output. Form isSET_PLOT_OPTION([COLOUR_Z, TRUE]);

• [TRANSFORM_XY, FALSE] - This appears to provide the ability to produce plots with different coordinate sys-
tems, but I am unsure of how to make it work. Need to get help here.

• [RUN_VIEWER, TRUE] - If you only wish Maxima to output a file and not launch the graphical viewer, set this
option to false. Remember, however, that if you wish to run multiple commands to generate data you will have
to recover the information from the maxout.PLOT_FORMAT file each time, because each new plot command will
overwrite it. Form isSET_PLOT_OPTION([RUN_VIEWER, FALSE]);

• [PLOT_FORMAT, GNUPLOT] - This controls which program gets the output from Maxima for display. There
are currently five viable options - GNUPLOT, OPENMATH, MGNUPLOT„ GEOMVIEW, and PS. PS is sim-
ply direct output to a postscript file, maxout.ps. Form isSET_PLOT_OPTION([PLOT_FORMAT, GEOMVIEW]);
MGNUPLOT is a Tk based interface to GNUPLOT (included with Maxima) which provides a rudimentary
GUI, but overall has fewer features. All of these programs are freely available. Geomview is currently Unix
only, and is available at http://geomview.sourceforge.net as both source and binary. Openmath is distributed as
part of Maxima. Gnuplot is widely available, with a homepage at http://www.gnuplot.info and the most current
work at http://sourceforge.net/projects/gnuplot. Gnuplot can run on both Windows and Linux and is currently
the default plotting solution.

• [[GNUPLOT_TERM, DEFAULT] - This option is specific to the gnuplot plot format. It sets the output termi-
nal type for gnuplot. Options are DEFAULT: The default gnuplot terminal is a separate graphical window,
DUMB - produces an ASCII art approximation to graphics, and PS - use this option in conjunction with
GNUPLOT_OUT_FILE in order to write gnuplot’s output to a postscript file instead of the screen. Form is
SET_PLOT_OPTION([GNUPLOT_TERM, PS]);

• [GNUPLOT_OUT_FILE, FALSE] - This option is specific to the gnuplot plot format. It is used to set the name of
the file to write to. Form isSET_PLOT_OPTION([GNUPLOT_OUT_FILE, "myplot.ps"]);

• [NTICKS, 10] - Controls the initial number of points used for the adaptive plotting routine. Form is
SET_PLOT_OPTION([NTICKS, 200]);

• [ADAPT_DEPTH, 10] - Controls the maximum number of splittings used for the adaptive plotting routine. Form
is SET_PLOT_OPTION([ADAPT_DEPTH, 5]);

• [GNUPLOT_PM3D, FALSE] - This option is specific to the gnuplot plot format. Controls the usage PM3D
mode, which has advanced 3D features. PM3D is only available in gnuplot versions after 3.7. Form is
SET_PLOT_OPTION([GNUPLOT_PM3D, TRUE]);

• [GNUPLOT_PREAMBLE, ] - This option is specific to the gnuplot plot format. Inserts gnuplot commands before
the plot is drawn. Any valid gnuplot commands may be used. Multiple commands should be separated with
a semi-colon. This is where any options not controlled by other Maxima gnuplot settings may be controlled.
Form isSET_PLOT_OPTION([GNUPLOT_PREAMBLE, "set log y; set log x"]);
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• [GNUPLOT_CURVE_TITLES, [DEFAULT]] - This option is specific to the gnuplot plot format. Controls the
titles given in the plot key. The default value is DEFAULT, which automatically sets the title of each curve to the
function plotted. If not DEFAULT,GNUPLOT_CURVE_TITLES should contain a list of strings. (To disable the plot
key entirely, add "set nokey" toGNUPLOT_PREAMBLE.) Form isSET_PLOT_OPTION([GNUPLOT_CURVE_TITLES,
["my first function","my second function"]]);

• [GNUPLOT_CURVE_STYLES, [with lines 3, with lines 1, with lines 2, with lines 5,
with lines 4, with lines 6, with lines 7]] - This option is specific to the gnuplot plot format. This is
a list of strings controlling the appearance of curves, i.e., color, width, dashing, etc., to be sent to the gnuplot
plot command. See the gnuplot documentation for "plot" for more information. Form is
SET_PLOT_OPTION([GNUPLOT_CURVE_STYLES, ["with lines 7", "with lines 2"]]);

• [GNUPLOT_DEFAULT_TERM_COMMAND, ] - This option is specific to the gnuplot plot format. The gnuplot com-
mand to set the terminal type for the default terminal. The default value is "", i.e., use gnuplot’s default. Form
is SET_PLOT_OPTION([GNUPLOT_DEFAULT_TERM_COMMAND, "set term x11"]);

• [GNUPLOT_DUMB_TERM_COMMAND, set term dumb 79 22] - This option is specific to the gnuplot plot format.
The gnuplot command to set the terminal type for the dumb terminal. Form is
SET_PLOT_OPTION([GNUPLOT_DUMB_TERM_COMMAND, "set term dumb 80 24"]);

• [GNUPLOT_PS_TERM_COMMAND, set size 1.5, 1.5; set term postscript eps enhanced color solid 24]
- This option is specific to the gnuplot plot format. The gnuplot command to set the terminal type for the
postscript terminal. See the gnuplot documentation for "set term postscript" for more detailed information.
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Figure 8.1: Graphing with Openmath, the default Maxima plotting tool
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Figure 8.2: Graphing with gnuplot, using the mgnuplot utility
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Figure 8.3: Graphing with GeomView.



CHAPTER 9

Maxims for the Maxima User

Some beginning users of algebraic manipulation systems find that their previous experiences with traditional program-
ming systems do not translate easily into algebraic programming; others find Maxima descriptions inadequate because
the emphasis is on the mixture of mathematical notations and algorithms, and not onefficientuse of machine or human
resources (no one likes to wait longer than necessary for an answer!). While we cannot provide a complete education
in efficient and effective programming, we have collected a fewmaximsin an attempt to help you with some of these
start-upproblems.

Algebraic manipulation is a new and different computational approach for which prior experience with
computational methods may be misleading. You should attempt to learn the ways in which algebraic
manipulation differs from other approaches.

For example, consider the problem of inverting ann×n matrix. In numerical analysis we learn that the problem
requires on the order ofn3 operations. Theoreticians will point out that forn sufficiently large, one can reduce the
number of multiplications belown3 to n2.8. This analysis is unfortunately not relevant in dealing with matrices with
symbolic entries. Consider the number of terms in the determinant of the generaln×n matrix whose elements are
the symbolsai, j . When the inverse is written out in a fully expanded form, just the determinant (a necessary part of
representing the inverse) hasn! terms. It is impossible to compute this determinant in less thantime proportional to n!
In fact, for largen, it is just not feasible to compute this form explicitly on existing computers. The combinatorial or
exponential character that some algebraic manipulation problems have when they are approached with an inefficient
algorithm, makes for a vastly different game from, say, numerical computation, where the size of objects is generally
known at the onset of the calculation, and does not increase.

Needlessly generalizing a problem usually results in unnecessary expense.

For example, if you wish to obtain determinants for a collection of matrices whose general pattern of entries is rep-
resented by parametric formulas, you might consider obtaining the determinant of the general matrix and substituting
various values for the parameters into the result. This may work for matrices of low order, but is probably a poor plan
for dealing with the exponential growth inherent in computing symbolic determinants. It would probably be better to
substitute the parameters first, since this would drastically reduce the cost of the determinant calculation.

Sometimes, when humans are dealing with formulas, it is preferable to use an indeterminate, sayG in a formula
which is really known to be, say, 3/5. On the other hand, it is likely (although not certain!) that the calculation using
3/5 will take less time than the calculation withG. Since the cost inherent in some computations is usually a function of
the number of variables in the expression,it pays to reduce the number of variables in a problem as much as possible.

You should be aware of the types of calculations which in the general case have exponential growth(e.g.
many matrix calculations with symbolic entries, repeated differentiation of products or quotients, solution
of systems of polynomial equations).

Your should anticipate a certain amount of trial-and-error in calculations.
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Just as in other problem-solving activities, often the first technique that comes to mind is not the best. While it
occasionally happens that brute force carries the day, cleverness in computing can be as important as cleverness in hand
calculations. It is natural, during hand calculations, to apply critical simplificiations or substitutions in computations.
These simplifications include collecting terms selectively or striking out terms which do not ultimately contribute
to the final answer because of physical interpretations. Computer algorithms which do not incorporate these same
tricks may bog down surprisingly soon. Thinking about these shortcuts may be important. In fact, it is one of the
more rewarding aspects of computer algebra systems that they give the problem solver an opportunity to organize,
encapsulate and distribute a particularly clever piece of mathematical manipulation.

Try to reduce your problem so that it can be performed in a simpler domain.

For example, if your problem appears to involve trigonometric functions, logs, exponentials, etc. see if you can reduce
it to a rational function (ratio of polynomials) problem. If it appears to be a rational function, see if you can, by
substitutions, make it into a polynomial problem, or a truncated power-series problem. If it appears to be a problem
involving rational numbers, consider the use of floating-point numbers as an alternative, if the growth in the size of
numbers presents difficulties.

There are other special forms that are especially efficient. In a number of areas of investigationit pays to convert
all expressions to the internal rational form (usingrat) or into Poisson-series form (usingintopois) to avoid the
overhead the the general representation. The price you may pay here is thtat the structure of the formulas may
be significantly different from those you began with: The canonical transformations used by these representations
drastically re-order, expand, and modify the original expressions.

Sometimes someone else has already started on your problem.

You should look through thesharedirectory programs available to see if there are contributed packages that might
be of use either as subroutines or as models for programming. You should also consider writing programs that you
develop in solving your problems in a form suitable for sharing with others.

Pattern matching allows you to tune the system simplifier to your application, and develop rule-replacement
programs.

Learning to use the pattern-matching facilities effectively is a nontrivial task. Nevertheless if you have a fairly
complex problem involvilng the recognition and application of identities, you should consider making an effort to use
these facilities. In recent years, advocates ofrule-based expert systemshave claimed that this type of formalism can or
should be used to incorporate varied types of knowledge. Algebraic manipulation programs have depended on pattern
matching since at least 1961, for some of their power.

Finally, we would like to point out that algebraic manipulation systems, in spite of their pitfalls, can be of major
assistance in solving difficult problems. If you are willing to invest some time in learning, there may be enormous
benefits in using such a system. We think it is unfortunate that some users reserve Maxima for difficult problems.
Those of us who have grown up with Maxima near at hand find it of great use in routine computations as well.



CHAPTER 10

Help Systems and Debugging

Using the debugger and the online help system.
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CHAPTER 11

Troubleshooting

Common errors, their cause and solution.
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CHAPTER 12

Advanced Examples

These examples try to draw on everything in the manual to show you what can be done with Maxima in advanced
usages. This is NOT a good starting point for new users.

Establishing a Minimum for the Rayleigh Quotient

We begin by defining the Rayleigh Quotient in general. From basic Regular Sturm-Liouville Eigenvalue principles,
we know that the Rayleigh Quotient is defined as

λ =
−pφ dφ

dx

∣∣∣ba +
R b
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[
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dφ
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)
2 − qφ2

]
dxR b

a φ2σdx

given the Sturm-Liouville differential equation

d
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(
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)
+ q(x)φ + λσ(x)φ = 0

wherea < x < b.

Maxima

RQ:(-p*(’ev(’ev(u(x)*’diff(u(x),x)),x=a)-’ev(’ev(u(x)*diff(u(x),x)),x=b))+
’integrate(p*’diff(u(x),x)^2-q*u(x)^2,x,a,b))/’integrate(u(x)^2*sigma,x,a,b);

TEX Output

R b
a p
(

d
d x u(x)

)
2 − q u2 (x) dx− p

(
EV
(
EV
(
u(x)

(
d

d x u(x)
))

,x = a
)
− EV

(
EV
(
u(x)

(
d

d x u(x)
))

,x = b
))

σ
R b

a u2 (x) dx

Now we evaluate it. This must be done in stages, otherwise the ev command will not understand its arguements.

Maxima

ev(RQ,p=1,q=0,sigma=1,u(x)=x-x^2,a=0,b=1);
ev(%,diff,integrate);
ev(%,ev);

TEX Output

84
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EV
(
EV
((

x− x2
) (

d
d x

(
x− x2

)))
,x = 1

)
− EV

(
EV
((

x− x2
) (

d
d x

(
x− x2

)))
,x = 0

)
+

R 1
0

(
d

d x

(
x− x2

))
2 dxR 1

0 (x− x2)2 dx

30

(
EV
(
EV
(
(1− 2x)

(
x− x2)) ,x = 1

)
− EV

(
EV
(
(1− 2x)

(
x− x2)) ,x = 0

)
+

1
3

)
10

This can be checked by hand. Seeing that it is correct, we now can use it to search for the minimum eigenvalue on
a more difficult problem:

Maxima

ev(RQ,p=1,q:-(x^2),sigma=1,u(x)=x-1,a=0,b=1)$
ev(%,diff,integrate)$
EV(%,EV,NUMER);

TEX Output

6.1

Maxima

ev(RQ,p=1,q:-(x^2),sigma=1,u(x)=-2*x^2+2,a=0,b=1)$
ev(%,diff,integrate)$
ev(%,ev,NUMER);

TEX Output

2.6428571428571432

Maxima

ev(RQ,p=1,q:-(x^2),sigma=1,u(x)=x^3+x^2-2,a=0,b=1)$
ev(%,diff,integrate)$
ev(%,ev,NUMER);

TEX Output

2.7760840108401084

The smallest eigenvalue must therefore be less than or equal to 2.642857...

Laplacian in Different Coordinate Systems

This will probably go in the main documentation somewhere, but for now I’ll stick it here.
It is possible to express the Laplacian in different coordinate systems, provided you know how to define the

coordinate system. We will use Spherical Coordinates for our first example:
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Maxima

load(vect)$
scalefactors([[rho*cos(theta)*sin(phi),rho*sin(theta)*sin(phi),rho*cos(phi)],rho,theta,phi]);
depends(f,[rho,theta,phi]);
express(laplacian(f));
ev(%,diff)$
ratexpand(%);

TEX Output

; In: LAMBDA (X ANS A3)

; #’(LAMBDA (X ANS A3) NIL (COND # #))

; Note: Variable A3 defined but never used.

;

; Note: Variable A3 defined but never used.

;

; Note: Variable A3 defined but never used.

;

; Note: Variable A3 defined but never used.

DONE

[ f (ρ,ϑ,ϕ)]

d
d ρ

(
d

d ρ f |sinϕ| ρ2
)

+ d
d ϑ

d
d ϑ f |sinϕ|

sin2 ϕ
+ d

d ϕ

(
d

d ϕ f |sinϕ|
)

|sinϕ| ρ2

2
(

d
d ρ f

)
ρ

+
d

d ϕ f cosϕ
sinϕ ρ2 +

d2

d ϑ2 f

sin2 ϕ ρ2
+

d2

d ϕ2 f

ρ2 +
d2

d ρ2 f
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CHAPTER 13

The Concept of Packages - Expanding Maxima’s Abilities

This chapter will try to give some in depth information on the why and how of Maxima packages. It is true that many
“standard” abilities of Maxima, such as vectors, are due to packages, but this part of the book will deal with more
specialized contributed packages, such as elliptical integrals, special scientific packages, etc. That way the first part of
the book can be rewritten less frequently, but we can still have all the information here.
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Calculus

Packages: asympa, pdiff, qual

15.1 asympa
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15.2 pdiff - Positional Derivatives

Author:
Barton Willis
University of Nebraska at Kearney
Kearney Nebraska

Documentation adapted for the Maxima Book by CY

Introduction

Working with derivatives of unknown functions1 can be cumbersome in Maxima. If we want, for example, the first
order Taylor polynomial off (x+x2) aboutx = 1, we get

(%i1) taylor(f(x + x^2),x,1,1);
(%o1)

f (2) +
(

d
d x

f
(
x2 + x

)∣∣∣∣ x=1

)
(x− 1) + · · ·

To “simplify” the Taylor polynomial, we must assign a gradient tof

(%i2) gradef(f(x),df(x))$
(%i3) taylor(f(x+x^2),x,1,1);
(%o3)

f (2) + 3 df(2) (x− 1) + · · ·

This method works well for simple problems, but it is tedious for functions of several variables or high order deriva-
tives. The positional derivative packagepdiff gives an alternative to usinggradef when working with derivatives of
unknown functions.

Usage

To use the positional derivative package, you must load it from a Maxima prompt. Assumingpdiff.lisp is in a
directory that Maxima can find, this is done with the command

(%i4) kill(all)$
(%i1) load("pdiff.lisp")$

Use the full pathname if Maxima can’t find the file. Note that thekill(all) is needed because the gradef defini-
tion will conflict with the proper functioning of the diff commands. Loadingpdiff.lisp sets the option variable
use_pdiff to true; whenuse_diff is true, Maxima will indicate derivatives of unknown functions positionally. To
illustrate, the first three derivatives off are

(%i2) [diff(f(x),x),
diff(f(x),x,2),
diff(f(x),x,3)];

(%o2) [
f(1)(x), f(2)(x), f(3)(x)

]
The subscript indicates the order of the derivative; sincef is a function of one variable, the subscript has only one

index. When a function has more than one variable, the subscript has an index for each variable

1By unknown function, we mean a function that isn’t bound to a formula and that has a derivative that isn’t known to Maxima.



CHAPTER 15. CALCULUS 92

(%i3) [diff(f(x,y),x,0,y,1), diff(f(y,x),x,0,y,1)];
(%o3) [

f(0,1)(x,y), f(1,0)(y,x)
]

Settinguse_pdiff to false (either locally or globally) inhibits derivatives from begin computed positionally

(%i4) diff(f(x,x^2),x), use_pdiff : false;
(%o4)

d
d x

f
(
x,x2)

(%i5) diff(f(x,x^2),x), use_pdiff : true;
(%o5)

f(1,0)(x,x
2) + 2x f(0,1)(x,x

2)

Taylor polynomials of unknown functions can be found without usinggradef. An example

(%i6) taylor(f(x+x^2),x,1,2);
(%o6)

f (2) + 3 f(1)(2) (x− 1) +

(
2 f(1)(2) + 9 f(2)(2)

)
(x− 1)2

2
+ · · ·

Additionally, we can verify thaty = f (x−ct)+g(x+ct) is a solution to a wave equation without usinggradef

(%i7) y : f(x-c*t) + g(x+c*t)$
(%i8) ratsimp(diff(y,t,2) - c^2 * diff(y,x,2));
(%o8)

0

(%i9) remvalue(y)$

Expressions involving positional derivatives can be differentiated

(%i10) e : diff(f(x,y),x);
(%o10)

f(1,0)(x,y)

(%i11) diff(e,y);
(%o11)

f(1,1)(x,y)

The chain rule is applied when needed

(%i12) [diff(f(x^2),x), diff(f(g(x)),x)];
(%o12) [

2x f(1)(x
2),g(1)(x) f(1)(g(x))

]
The positional derivative package doesn’t alter the way known functions are differentiated

(%i13) diff(exp(-x^2),x);
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(%o13)

−2xe−x2

To convert positional derivatives to standard Maxima derivatives, useconvert_to_diff

(%i14) e : [diff(f(x),x), diff(f(x,y),x,1,y,1)];
(%o14) [

f(1)(x), f(1,1)(x,y)
]

(%i15) e : convert_to_diff(e);
(%o15) [

d
d x

f (x) ,
d2

d yd x
f (x,y)

]

To convert back to a positional derivative, useev with diff as an argument

(%i16) ev(e,diff);
(%o16) [

f(1)(x), f(1,1)(x,y)
]

Conversion to standard derivatives sometimes requires the introduction of a dummy variable. Here’s an example

(%i17) e : diff(f(x,y),x,1,y,1);
(%o17)

f(1,1)(x,y)

(%i18) e : subst(p(s),y,e);
(%o18)

f(1,1)(x, p(s))

(%i19) e : convert_to_diff(e);
(%o19)

d2

d%x0d x
f (x,%x0)

∣∣∣∣ [%x0=p(s)]

Dummy variables have the form ci, where i=0,1,2. . . and c is the value of the option variabledummy_char. The
default value fordummy_char is %x. If a user variable conflicts with a dummy variable, the conversion process can
give an incorrect value. To convert the previous expression back to a positional derivative, useev with diff andat as
arguments

(%i20) ev(e,diff,at);
(%o20)

f(1,1)(x, p(s))

Maxima correctly evaluates expressions involving positional derivatives if a formula is later given to the function.
(Thus converting an unknown function into a known one.) Here is an example; let

(%i21) e : diff(f(x^2),x);
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(%o21)

2x f(1)(x
2)

Now, give f a formula

(%i22) f(x) := x^5;
(%o22)

f (x) :

= x5

and evaluatee

(%i23) ev(e);
(%o23)

10x9

This result is the same as

(%i24) diff(f(x^2),x);
(%o24)

10x9

In this calculation, Maxima first evaluatesf (x) to x10 and then does the derivative. Additionally, we can substitute a
value forx before evaluating

(%i25) ev(subst(2,x,e));
(%o25)

5120

We can duplicate this with

(%i26) subst(2,x,diff(f(x^2),x));
(%o26)

5120

(%i27) remfunction(f);
(%o27)

[ f ]

We can also evaluate a positional derivative using a local function definition

(%i28) e : diff(g(x),x);
(%o28)

g(1)(x)

(%i29) e, g(x) := sqrt(x);
(%o29)

1
2
√

x
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(%i30) e, g = sqrt;
(%o30)

1
2
√

x

(%i31) e, g = h;
(%o31)

h(1)(x)

(%i32) e, g = lambda([t],t^2);
(%o32)

2x

Thepderivop function

If F is an atom andi1, i2, . . . in are nonnegative integers, then pderivop(F, i1, i2, . . . in), is the function that has the
formula

∂i1+i2+···+in

∂xi1
1 ∂xi2

2 · · ·∂xin
n

F(x1,x2, . . .xn).

If any of the derivative arguments are not nonnegative integers, we’ll get an error

(%i33) pderivop(f,2,-1);

Each derivative order must be a nonnegative integer

-- an error. Quitting. To debug this try DEBUGMODE(TRUE);)

Thepderivop function can be composed with itself

(%i34) pderivop(pderivop(f,3,4),1,2);
(%o34)

f(4,6)

If the number of derivative arguments between two calls topderivop isn’t the same, Maxima gives an error

(%i35) pderivop(pderivop(f,3,4),1);

The function f expected 2 derivative argument(s), but it received 1

-- an error. Quitting. To debug this try DEBUGMODE(TRUE);)

Whenpderivop is applied to a known function, the result is a lambda form2

(%i36) f(x) := x^2;
(%o36)

f (x) :

= x2

(%i37) df : pderivop(f,1);
(%o37)

λ([G2491] ,2G2491)
2If you repeat theses calculations, you may get a different prefix for thegensym variables.
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(%i38) apply(df,[z]);
(%o38)

2z

(%i39) ddf : pderivop(f,2);
(%o39)

λ([G2492] ,2)

(%i40) apply(ddf,[10]);
(%o40)

2

(%i41) remfunction(f);
(%o41)

[ f ]

If the first argument topderivop is a lambda form, the result is another lambda form

(%i42) f : pderivop(lambda([x],x^2),1);
(%o42)

λ([G2493] ,2G2493)

(%i43) apply(f,[a]);
(%o43)

2a

(%i44) f : pderivop(lambda([x],x^2),2);
(%o44)

λ([G2494] ,2)

(%i45) apply(f,[a]);
(%o45)

2

(%i46) f : pderivop(lambda([x],x^2),3);
(%o46)

λ([G2495] ,0)

(%i47) apply(f,[a]);
(%o47)

0

(%i48) remvalue(f)$

If the first argument topderivop isn’t an atom or a lambda form, Maxima will signal an error

(%i49) pderivop(f+g,1);

Non-atom g+f used as a function

-- an error. Quitting. To debug this try DEBUGMODE(TRUE);)
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You may usetellsimpafter together withpderivop to give a value to a derivative of a function at a point; an
example

(%i50) tellsimpafter(pderivop(f,1)(1),1)$
(%i51) tellsimpafter(pderivop(f,2)(1),2)$
(%i52) diff(f(x),x,2) + diff(f(x),x)$
(%i53) subst(1,x,%);
(%o53)

3

This technique works for functions of several variables as well

(%i54) kill(rules)$
(%i55) tellsimpafter(pderivop(f,1,0)(0,0),a)$
(%i56) tellsimpafter(pderivop(f,0,1)(0,0),b)$
(%i57) sublis([x = 0, y = 0], diff(f(x,y),x) + diff(f(x,y),y));
(%o57)

b + a

TEX-ing positional derivatives

Several option variables control how positional derivatives are converted to TEX. When the option variabletex_uses_prime_for_derivatives
is true (default false), makes functions of one variable TEX as superscripted primes

(%i58) tex_uses_prime_for_derivatives : true$
(%i59) tex(makelist(diff(f(x),x,i),i,1,3))$[

f ′(x), f ′′(x), f ′′′(x)
]

(%i60) tex(makelist(pderivop(f,i),i,1,3))$[
f ′, f ′′, f ′′′

]
When the derivative order exceeds the value of the option variabletex_prime_limit, (default 3) derivatives are

indicated with parenthesis delimited superscripts

(%i61) tex(makelist(pderivop(f,i),i,1,5)), tex_prime_limit : 0$[
f (1), f (2), f (3), f (4), f (5)

]
(%i62) tex(makelist(pderivop(f,i),i,1,5)), tex_prime_limit : 5$[

f ′, f ′′, f ′′′, f ′′′′, f ′′′′′
]

The value oftex_uses_prime_for_derivatives doesn’t change the way functions of two or more variables are
converted to TEX.

(%i63) tex(pderivop(f,2,1))$
f(2,1)

When the option variabletex_uses_named_subscripts_for_derivatives (default false) is true, a deriva-
tive with respect to the i-th argument is indicated by a subscript that is the i-th element of the option variable
tex_diff_var_names. An example is the clearest way to describe this.

(%i64) tex_uses_named_subscripts_for_derivatives : true$
(%i65) tex_diff_var_names;
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(%o65)

[x,y,z]

(%i66) tex([pderivop(f,1,0), pderivop(f,0,1), pderivop(f,1,1), pderivop(f,2,0)])$
[ fx, fy, fxy, fxx]

(%i67) tex_diff_var_names : [a,b];
(%o67)

[a,b]

(%i68) tex([pderivop(f,1,0), pderivop(f,0,1), pderivop(f,1,1), pderivop(f,2,0)])$
[ fa, fb, fab, faa]

(%i69) tex_diff_var_names : [x,y,z];
(%o69)

[x,y,z]

(%i70) tex([diff(f(x,y),x), diff(f(y,x),y)])$
[ fx(x,y), fx(y,x)]

When the derivative order exceeds tt tex_prime_limit, revert to the default method for converting to TEX

(%i71) tex(diff(f(x,y,z),x,1,y,1,z,1)), tex_prime_limit : 4$
fxyz(x,y,z)

(%i72) tex(diff(f(x,y,z),x,1,y,1,z,1)), tex_prime_limit : 1$
f(1,1,1)(x,y,z)

A longer example

We’ll use the positional derivative package to change the independent variable of the differential equation

(%i73) de : 4*x^2*’DIFF(y,x,2) + 4*x*’DIFF(y,x,1) + (x-1)*y = 0;
(%o73)

4x2
(

d2

d x2 y

)
+ 4x

(
d

d x
y

)
+ (x− 1) y = 0

With malice aforethought, we’ll assume a solution of the formy = g(xn), wheren is a number. Substituting
y→ g(xn) in the differential equation gives

(%i74) de : subst(g(x^n),y,de);
(%o74)

4x2
(

d2

d x2 g(xn)
)

+ 4x

(
d

d x
g(xn)

)
+ (x− 1) g(xn) = 0

(%i75) de : ev(de, diff);
(%o75)

4x2 (n2x2n−2g′′(xn) + (n− 1) nxn−2g′(xn)
)

+ 4nxng′(xn) + (x− 1) g(xn) = 0

Now letx→ t1/n

(%i76) de : radcan(subst(x^(1/n),x, de));
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(%o76)

4n2x2g′′(x) + 4n2xg′(x) +
(

x
1
n − 1

)
g(x) = 0

Settingn→ 1/2, we recognize thatg is the order 1 Bessel equation

(%i77) subst(1/2,n, de);
(%o77)

x2g′′(x) + xg′(x) +
(
x2 − 1

)
g(x) = 0

Limitations

• Positional derivatives of subscripted functions are not allowed.

• Derivatives of unknown functions with symbolic orders are not computed positionally.

• Thepdiff.lisp code alters the Maxima functionsmqapply andsdiffgrad Although the author is unaware
of any problems associated with these altered functions, there may be some. Settinguse_pdiff to false should
restoremqapply andsdiffgrad to their original functioning.
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24.2 dimension - Advanced Dimensional Analysis

Author:
Barton Willis
University of Nebraska at Kearney
Kearney Nebraska

Documentation adapted for the Maxima Book by CY

Introduction

This document demonstrates some of the abilities of a Maxima package called dimension. Not surprisingly, its purpose
is to perform dimensional analysis. Maxima comes with an older package dimensional analysis (dimen) that is similar
to the one that was in the commercial Macsyma system. The software described in this document differs greatly from
the older one.

Usage

To use the package, you must first load it. From a Maxima prompt, this is done using the command

(%i1) load("dimension.mac")$

To begin, we need to assign dimensions to the variables we want to use. Use theqput function to do this; for example,
to declarex a length,c a speed, andt a time, use the commands

(%i2) qput(x, "length", dimension)$
(%i3) qput(c, "length" / "time", dimension)$
(%i4) qput(t, "time", dimension)$

We’ve defined the dimensions length and time to be strings; doing so reduces the chance that they will conflict with
other user variables. To declare a dimensionless variableσ, use 1 for the dimension. Thus

(%i5) qput(sigma,1,dimension)$

To find the dimension of an expression, use thedimension function. For example

(%i6) dimension(4 * sqrt(3) /t);
(%o6)

1
time

(%i7) dimension(x + c * t);
(%o7)

length

(%i8) dimension(sin(c * t / x));
(%o8)

1

(%i9) dimension(abs(x - c * t));
(%o9)

length

(%i10) dimension(sigma * x / c);
(%o10)

time
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(%i11) dimension(x * sqrt(1 - c * t / x));
(%o11)

length

dimension applieslogcontract to its argument; thus expressions involving a difference of logarithms with dimen-
sionally equal arguments are dimensionless; thus

(%i12) dimension(log(x) - log(c*t));
(%o12)

1

dimension is automatically maps over lists. Thus

(%i13) dimension([42, min(x,c*t), max(x,c*t), x^^4, x . c]);
(%o13) [

1, length, length, length4,
length2

time

]

When an expression is dimensionally inconsistent,dimension should signal an error

(%i14) dimension(x + c);

Expression is dimensionally inconsistent.

#0: dimension(e=x+c)(dimension.mac line 154)

-- an error. Quitting. To debug this try DEBUGMODE(TRUE);)

(%i15) dimension(sin(x));

Expression is dimensionally inconsistent.

#0: dimension(e=SIN(x))(dimension.mac line 229)

-- an error. Quitting. To debug this try DEBUGMODE(TRUE);)

An equationis dimensionally correct when either the dimensions of both sides match or when one side of the equation
vanishes. For example

(%i16) dimension(x = c * t);
(%o16)

length

(%i17) dimension(x * t = 0);
(%o17)

length time

When the two sides of an equation have different dimensions and neither side vanishes,dimension signals an error

(%i18) dimension(x = c);

Expression is dimensionally inconsistent.

#0: dimension(e=x = c)(dimension.mac line 175)

-- an error. Quitting. To debug this try DEBUGMODE(TRUE);)



CHAPTER 24. PHYSICS 112

The functiondimension works with derivatives and integrals

(%i19) dimension(’diff(x,t));
(%o19)

length
time

(%i20) dimension(’diff(x,t,2));
(%o20)

length

time2

(%i21) dimension(’diff(x,c,2,t,1));
(%o21)

time
length

(%i22) dimension(’integrate (x,t));
(%o22)

length time

Thus far, any string may be used as a dimension; the other three functions in this package,dimension_as_list ,
dimensionless, andnatural_unit all require that each dimension is a member of the listfundamental_dimensions.
The default value is of this list is

(%i23) fundamental_dimensions;
(%o23)

[mass, length, time]

A user may insert or delete elements from this list. The functiondimension_as_list returns the dimension of an
expression as a list of the exponents of the fundamental dimensions. Thus

(%i24) dimension_as_list(x);
(%o24)

[0,1,0]

(%i25) dimension_as_list(t);
(%o25)

[0,0,1]

(%i26) dimension_as_list(c);
(%o26)

[0,1,−1]

(%i27) dimension_as_list(x/t);
(%o27)

[0,1,−1]

(%i28) dimension_as_list("temp");
(%o28)

[0,0,0]
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In the last example, "temp" isn’t an element offundamental_dimensions; thus,dimension_as_list reports that
"temp" is dimensionless. To correct this, append "temp" to the listfundamental_dimensions

(%i29) fundamental_dimensions : endcons("temp", fundamental_dimensions);
(%o29)

[mass, length, time, temp]

Now we have

(%i30) dimension_as_list(x);
(%o30)

[0,1,0,0]

(%i31) dimension_as_list(t);
(%o31)

[0,0,1,0]

(%i32) dimension_as_list(c);
(%o32)

[0,1,−1,0]

(%i33) dimension_as_list(x/t);
(%o33)

[0,1,−1,0]

(%i34) dimension_as_list("temp");
(%o34)

[0,0,0,1]

To remove "temp" fromfundamental_dimensions, use thedelete command

(%i35) fundamental_dimensions : delete("temp", fundamental_dimensions)$

The functiondimensionless finds abasis for the dimensionless quantities that can be formed from a list of
dimensioned quantities. For example

(%i36) dimensionless([c,x,t]);

Dependent equations eliminated: (1)

(%o36) [c t
x

,1
]

(%i37) dimensionless([x,t]);

Dependent equations eliminated: (1)

(%o37)

[1]

In the first example, every dimensionless quantity that can be formed as a product of powers ofc,x, andt is a power
of ct/x; in the second example, the only dimensionless quantity that can be formed fromx andt are the constants.
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The functionnatural_unit(e,[v1,v2,...,vn]) finds powersp1, p2, . . . pn such that

dimension(e) = dimension(vp1
1 vp2

2 . . .vpn
n ).

Simple examples are

(%i38) natural_unit(x,[c,t]);

Dependent equations eliminated: (1)

(%o38)

[c t]

(%i39) natural_unit(x,[x,c,t]);

Dependent equations eliminated: (1)

(%o39)

[x]

Here is a more complex example; we’ll study the Bohr model of the hydrogen atom using dimensional analysis. To
make things more interesting, we’ll include the magnetic moments of the proton and electron as well as the universal
gravitational constant in with our list of physical quantities. Let ¯h be Planck’s constant,e the electron charge,µe the
magnetic moment of the electron,µp the magnetic moment of the proton,me the mass of the electron,mp the mass of
the proton,G the universal gravitational constant, andc the speed of light in a vacuum. For this problem, we might
like to display the square root as an exponent instead of as a radical; to do this, setsqrtdispflag to false

(%i40) SQRTDISPFLAG : false$

Assuming a system of units where Coulomb’s law is

force =
product of charges

distance2
,

we have

(%i41) qput(%hbar, "mass" * "length"^2 / "time",dimension)$
(%i42) qput(%%e, "mass"^(1/2) * "length"^(3/2) / "time",dimension)$
(%i43) qput(%mue, "mass"^(1/2) * "length"^(5/2) / "time",dimension)$
(%i44) qput(%mup, "mass"^(1/2) * "length"^(5/2) / "time",dimension)$
(%i45) qput(%me, "mass",dimension)$
(%i46) qput(%mp, "mass",dimension)$
(%i47) qput(%g, "length"^3 / ("time"^2 * "mass"), dimension)$
(%i48) qput(%c, "length" / "time", dimension)$

The numerical values of these quantities may defined usingnumerval. We have

(%i49) numerval(%%e, 1.5189073558044265d-14*sqrt(kg)*meter^(3/2)/sec)$
(%i50) numerval(%hbar, 1.0545726691251061d-34*kg*meter^2/sec)$
(%i51) numerval(%c, 2.99792458d8*meter/sec)$
(%i52) numerval(%me, 9.1093897d-31*kg)$
(%i53) numerval(%mp, 1.6726231d-27*kg)$

To begin, let’s use only the variablese,c,h̄,me, andmp to find the dimensionless quantities. We have

(%i54) dimensionless([%hbar, %me, %mp, %%e, %c]);
(%o54) [

me

mp
,
ch̄
e2 ,1

]
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The second element of this list is the reciprocal of the fine structure constant. To find numerical values, usefloat

(%i55) float(%);
(%o55) [

5.446169970987487× 10−4,137.03599074450503,1.0
]

The natural units of energy are given by

(%i56) natural_unit("mass" * "length"^2 / "time"^2, [%hbar, %me, %mp, %%e, %c]);
(%o56) [

c2 me,
c3h̄ mp

e2

]

Let’s see what happens when we includeµe,µp, andG. We have

(%i57) dimensionless([%hbar, %%e, %mue, %mup, %me, %mp, %g, %c]);
(%o57) [

µp

µe
,
c2 me µe

e3 ,
c2 mp µe

e3 ,
e4 G
c4 µ2

e
,
ch̄
e2 ,1

]

To find the natural units of mass, length, time, speed, force, and energy, use the commands

(%i58) natural_unit("mass", [%hbar, %%e, %me, %mp, %mue, %mup, %g, %c]);
(%o58) [

mp,
c2 m2

e µe

e3 ,
c2 m2

e µp

e3 ,
G m3

e

e2 ,
ch̄ me

e2

]
(%i59) natural_unit("length", [%hbar, %%e, %me, %mp, %mue, %mup, %g, %c]);
(%o59) [

e2 mp

c2 m2
e
,
µe

e
,
µp

e
,
G me

c2 ,
h̄

c me

]
(%i60) natural_unit("time", [%hbar, %%e, %me, %mp, %mue, %mup, %g, %c]);
(%o60) [

e2 mp

c3 m2
e
,

µe

e c
,
µp

e c
,
G me

c3 ,
h̄

c2 me

]
(%i61) natural_unit("mass" * "length" / "time"^2, [%hbar, %%e, %me, %mp, %mue, %mup, %g,

%c]);
(%o61) [

c4 me mp

e2 ,
c6 m3

e µe

e5 ,
c6 m3

e µp

e5 ,
c4 G m4

e

e4 ,
c5h̄ m2

e

e4

]
(%i62) natural_unit("mass" * "length"^2 / "time"^2, [%hbar, %%e, %me, %mp, %mue, %mup,

%g, %c]);
(%o62) [

c2 mp,
c4 m2

e µe

e3 ,
c4 m2

e µp

e3 ,
c2 G m3

e

e2 ,
c3h̄ me

e2

]



CHAPTER 24. PHYSICS 116

The first element of this list is the rest mass energy of the proton.
The dimension package can handle vector operators such as dot and cross products, and the vector operators div,

grad, and curl. To use the vector operators, we’ll first declare them

(%i63) prefix(div)$
(%i64) prefix(curl)$
(%i65) infix("~")$

Let’s work with the electric and magnetic fields; again assuming a system of units where Coulomb’s law is

force =
product of charges

distance2

the dimensions of the electric and magnetic field are

(%i66) qput(e, sqrt("mass") / (sqrt("length") * "time"), dimension)$
(%i67) qput(b, sqrt("mass") / (sqrt("length") * "time"),dimension)$
(%i68) qput(rho, sqrt("mass")/("time" * "length"^(3/2)), dimension)$
(%i69) qput(j, sqrt("mass") / ("time"^2 * sqrt("length")), dimension)$

Finally, declare the speed of lightc as

(%i70) qput(c, "length" / "time", dimension);
(%o70)

length
time

Let’s find the dimensions of‖E‖2,E ·B,‖B‖2, andE×B/c. We have

(%i71) dimension(e.e);
(%o71)

mass

length time2

(%i72) dimension(e.b);
(%o72)

mass

length time2

(%i73) dimension(b.b);
(%o73)

mass

length time2

(%i74) dimension((e ~ b) / c);
(%o74)

mass

length2 time

The physical significance of these quantities becomes more apparent if they are integrated overR3. Defining

(%i75) qput(v, "length"^3, dimension);
(%o75)

length3
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We now have

(%i76) dimension(’integrate(e.e, v));
(%o76)

length2 mass

time2

(%i77) dimension(’integrate(e.b, v));
(%o77)

length2 mass

time2

(%i78) dimension(’integrate(b.b, v));
(%o78)

length2 mass

time2

(%i79) dimension(’integrate((e ~ b) / c,v));
(%o79)

length mass
time

It’s clear that‖E‖2,E ·B and‖B‖2 are energy densities whileE×B/c is a momentum density.
Let’s also check that the Maxwell equations are dimensionally consistent.

(%i80) dimension(DIV(e)= 4*%pi*rho);
(%o80)

mass
1
2

length
3
2 time

(%i81) dimension(CURL(b) - ’diff(e,t) / c = 4 * %pi * j / c);
(%o81)

mass
1
2

length
3
2 time

(%i82) dimension(CURL(e) + ’diff(b,t) / c = 0);
(%o82)

mass
1
2

length
3
2 time

(%i83) dimension(DIV(b) = 0);
(%o83)

mass
1
2

length
3
2 time
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24.3 physconst - Definitions for Physical Constants
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CHAPTER 32

Installing Maxima

32.1 Requirements

Your basic needs are a computer running Windows, Linux or MacOSX and a supported Lisp implimentation. Currently
on Linux Maxima will build on CMUCL (18e recommended), GCL (2.5.0 or greater) and CLisp (2.29, 2.31 or greater -
2.30 won’t work properly). On Windows builds have been achieved with Clisp and GCL - GCL is used in the standard
binary. On MacOSX Maxima is compiled using OpenMCL. Note that Lisp choice is not an either/or situation - if you
have multiple lisp implimentations available you can build on all of them and select at runtime which Lisp you would
like to use. While it is possible to build your own Windows or Mac OS X binary, it is quite difficult to do so (especially
on Windows) and unless there is a real need we recommend you use the provided binaries for those platforms. For
Windows a Wizard based install has been created using InnoSetup which should look and feel very familiar to most
Windows users. On MacOSX you need to use either the DarwinPorts? or Other way? tools to download the binaries.

32.2 Source Based Installation on Linux

Note: we assume here that your machine has development libraries and tools installed. If you get file/feature not found
failures during configure it is probably because your distribution doesn’t have the development libraries and tools you
need installed.

32.2.1. Configure

(Note - this discussion assumes you are using Maxima 5.9.0 or greater to build with. Older versions have a terrible
build system and are no longer] supported.)

Your first task (assuming you are in the top level directory of the maxima source file hierchy) is to determine which
version(s) of Lisp you intend to build on. If you are building with multiple Lisps, you should specify which one you
want to be your default Lisp (the Lisp Maxima will run with if you do not tell it otherwise.)

In the example below, options are given to enable building on all three Lisps supported by Maxima 5.9.0. The
default Lisp of CLisp is selected.

./configure -enable-gcl -enable-cmucl -enable-clisp
-with-default-lisp=clisp

You should see some output scroll by and then a summary similar to the following:

Summary:
clisp enabled. Executable name: "clisp"
CMUCL enabled. Executable name: "lisp"
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GCL enabled. Executable name: "gcl"
default lisp: clisp
wish executable name: "wish"

The wish executable is related to Tcl/Tk used for the Xmaxima gui. If you encounter a case where a Lisp executable
name is not found or you wish to use a different version of a particular lisp, you can specify the location of the
executible you wish to use. For example, if you have a different copy of CMUCL you wish to use with an executable
name of cmulisp instead of lisp, you can specify that with the following:

./configure -enable-gcl -enable-cmucl -enable-clisp
-with-cmucl=/usr/local/bin/cmulisp -with-default-lisp=clisp

Summary:
clisp enabled. Executable name: "clisp"
CMUCL enabled. Executable name: "/usr/local/bin/cmulisp"
GCL enabled. Executable name: "gcl"
default lisp: clisp
wish executable name: "wish"

There are other options available for configure, but these should be enough to get you started on a standard Linux
system. If you need more options, check the output from

./configure -help

32.2.2. Make

Once you have configured the program to your satisfaction, simply type make. You will see a very long series of
outputs as Maxima is compiled on each Lisp platform you have selected. This is a long process even on fairly fast
machines.

Once this process is done, you should run make check. This will run each build of Maxima through a series
of mathematical tests to ensure your Maxima build succeeded. You will see something similar to the following,
depending on which Lisp(s) you compiled with. (Plus some make related output about checking directories for tasks
which doesn’t matter):

make[1]: Entering directory ‘/home/user/maxima/tests’
echo "Running test suite with clisp...";

/bin/sh ../maxima-local -lisp=clisp -batch-lisp=tests.lisp > tests-clisp.log <
/dev/null 2>&1;
./summarize-log tests-clisp.log
Running test suite with clisp...

*** Summary results for tests recorded in
*** log file tests-clisp.log:
Error summary:
Error(s) found in rtest15.mac: (4)

Expected failures (known bugs in this version of Maxima):
rtest15.mac: (4)

Timing:
Real time: 9.218797 sec.
Run time: 9.01 sec.
GC: 60, GC time: 0.64 sec.
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*** end of summary for tests-clisp.log

echo "Running test suite with cmucl...";
/bin/sh ../maxima-local -lisp=cmucl -batch-lisp=tests.lisp > tests-cmucl.log <
/dev/null 2>&1;
./summarize-log tests-cmucl.log
Running test suite with cmucl...

*** Summary results for tests recorded in
*** log file tests-cmucl.log:
Error summary:
Error(s) found in rtest15.mac: (4)

Expected failures (known bugs in this version of Maxima):
rtest15.mac: (4)

Timing:
; 3.91f0 seconds of real time
; 3.34f0 seconds of user run time
; 0.49f0 seconds of system run time
; [Run times include 0.21f0 seconds GC run time]
*** end of summary for tests-cmucl.log

echo "Running test suite with gcl...";
/bin/sh ../maxima-local -lisp=gcl -batch-lisp=tests.lisp > tests-gcl.log < /de
v/null 2>&1;
./summarize-log tests-gcl.log
Running test suite with gcl...

*** Summary results for tests recorded in
*** log file tests-gcl.log:
Error summary:
Error(s) found in rtest15.mac: (4)

Expected failures (known bugs in this version of Maxima):
rtest15.mac: (4)

Timing:
real time : 8.690 secs
run time : 7.160 secs
*** end of summary for tests-gcl.log

If all these tests are passed and the number of expected failures is the same as the number of known failures,
everything has tested out correctly and you can proceed to the install, which is simply the standard make install.
Getting advanced features like the Emacs modes to work may require a little extra work - see the documentation on
those specific modes for details about making them work.

32.3 Source Based Installation on Windows

Someone want to write this one up? I am most definitely not qualified.

32.4 Source Based Installation on MacOSX

Someone who has done it?
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