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ABSTRACT

A design for the definite integration of approximately fifty Special
Functions i described., The Generalized Hypergeometric Functions are utilized as
a basis for the representation of the members of the above set of Special
Functions., Only a relatively small number of formulas that generally involve
Generalized Hypergeometric Functions are utilized for the integration stage. A
last and crucial stage is required in the integration process: the reduction of

the Generalized Hypergeometric Function to Elementary and/or Special Functions.
The results of an early implementation which invoives Laplace transforms

are given and some actyal examples with their corresponding timing are provided.
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Chapter 1

INTRCDUCTION

We presentl a procedure for the definite integration of a class of
Special Functions, the so called functions of mathematical physics. In providing
this procedure, ue include all the well knoun Special Functions - approximately
fifty -~ that often arise in mathematical problems in experimental -and
theoretical physics, in mathematical astronomy and satelite theory, as well as in

all branches of engineering - electrical, nuclear, naval, aero etc. .

The area of Special Functions, despite its wide applicability to
problems of many areas of engineering and science, is very well knoun for its
"chaotic state"[2]. For us, the wide applicability was the most attractive point
and strongly motivated us throughout our research, white the “chaotic state” of
the domain became to us a challenging target for exploration. A lot of
tnformation, encyclopedic in nature, can be found in numerous books and articles
which include specific problems and methods, most of which are mainly results of
particular applications. The tools that are mainly used are those provided by

classical mathematical analysis {31, [4].

1 gmall portions of this thesis have been copied from the author’s paper
"Symbalic Laplace Transforms for Special Functions" (11



An effort touwards structuring the domain of Special Functions has been
employed by using Lie Algebras and Lie Groups [2], [S). This approach is an
effort to "bridge" the big gap between pure and applied mathematics much effort

should be done in this area in the future.

In computer science, there has been considerable effort to compute
values of some very important Special Functions with different numerical and
approximating techniques [B}. From the point of view of symbolic mathematics,
some cases of the Error, Beta, and Gamma functions have been employed in
indefinite integration [7], and definite integration [8]. All of these packages
are implemented in the symbolic manipulation system MACSYMA [9] at the M.I.T.
Laboratory for Computer Science (formerly Project MAC). To the best of our
knouwledge there has been no other system designed for manipuiation of the
integral transforms or definite integration of the approximately fifty Special

Functions, wherein the focus of our thesis lies.

One faces two main difficulties when dealing with the problem of
definite integration of Special Functions in symbolic maniputation. First, the
area of Special Functions as we have aiready mentioned has been acknowledged as a
"ehaotie area". Second, definite integration generally is a recursively
unsoivable problem [18). In our procedure we take advantage of the fact that
most of the Special Functions can be considered as particular instances of the
Generalized Hypergeometric Function and therefore can be integrated, using the
Generalized Huypergeometric Function representation, with a table consisting of
very few formuias. Besides, we were strongiy influenced by the monumental work
of "Bateman's Manuscript Project" [3), [11} to view a significant part of

Definite Integration as particular instances of Integral Transforms.



Hhat our thesis will try to show is not a general algorithm, but what
is the best way, using currently available knouledge, to solve a large portion of
the aforementioned problem in a fashion wuhich is relatively general and

computational Iy effective,

The results we obtained in an early implementation which did not
incorporate all of the described methods in this thesis encouraged us
tremendously and uitimately infiuenced our decisions that this uas a good uway to
follow (Resulte of this early impiementation ui*h some actual examples
accompanied with their timing is shoun in the Appendix 1). Moreover, ue had the
chance to utilize available machinery from the classical mathematical analysis

and create new algorithmic techniques as uell as neu formuias (see chapter 3).

The notation we foilow throughout this thesis is the traditipnal ons

and established by the Bateman Manuscript Project [3}, ([l11].



1.1. OVERVIEW OF OUR APPROACH

In this section we provide a general overview of our scheme of
definite integration. Our principal strategy for the definite integrais is to
classify them as some kind of integral transform. We have been mainly concerned
with the integration of the clase of Special Functions. The main vehicle for the

ciass of Special Functions is the Generalized Hypergeometric Function (121.

Definition 1. We call the Generalized Hupergeometric Function,

otheruise knoun as the Generalized Gauss function, the series
qu[al.az.---.apabl.bz.-n.bqﬁzl (1)

inf {ay},lan)y, +v. fay) zn

-2 - S —

where 31, 82,..., ay and by, bz.....bq are complex parameters, z is a complex
variable. MWe denote:

{a), = ala+l) ... (asn-1} (2)
We also denote the above series as 'qu[al.az.....ap:bl.bz,...,bq:zl or

qu[(a}:(bl;z] or simply qu(zl.
The key ideas in our design, depicted in figure 1, are:

Stage 1. Represent the Special Functions, if possible, as particular
instances of the Generalized Hypergeometric Function.
Stage 2. Provide a fairiy general formuia to integrate the results of

gtage 1.



Stage 3. Take the result of stage 2 involving a GCeneralized
Hypergsomztric Function, and reduce it. to an elementary and/or Special L

Functioni{sl}.

| i | I

|GENERALIZED  } ijp |GENERALIZED |

LEVEL 11. |HYPERGEOMETRI G | o mm 2m e m e > |HYPERGEOMETRIC |

' |[FUNCTIONS Iy [FUNCTIONS ]

| | ] |

\
/ \
/ \
/ \
/ \
/ \

/ N
| | [SPECIAL |
| SPECIAL | | AND/OR |

LEVEL I. --->{ FUNCTIONS | [ELEMENTARY  j—-->

| N 1 FUNCTIONS |
| t }

Figure 1.

Henca, our design alternates betuzen tuo levels:

Level 1. The expression involves Special and/or Elementary Functions.

Level 2. The expression involves Generalized Hupergeomatric

Functions.



We uill give next a simple illustration of the above scheme, but first

let's provide one more daefinition,

Definition 2. We call the Laplace Transform of a real or complex

function f{t), defined for all real nonnegative values of t, the integral

Llritrept at (3)

if it exists for some values of the complex variable p. It is uritten LIf(2)]

and determines a function F(p}, thus

L]
LiF()) = [ fttiePt at = Fip) (%)
e next proceed with 2 simple illustration of this approach.

Given input :
t-3/2 13(231/2t1/2) e-bt (5,.

where I3 is a modified Bessel function of the first kind [4], [i3}, the following

uitl take place in each of the three stages:

Stage 1.

Since . _
1,02} = e™¥HI/Z 3 (267172 (8)
axpressioﬁ {5} becomes
it-3/2 1(21al/21/2) o-pt 7
Since
zV
Jy(z) = meeeeeeee gLl vils -1/4 22] (8)
2¥T (v41)

{7) becomes
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2372

-~ gF1l 43 atl e7Pt 9
Bp

Stage 2.

In this stage ue recognize that our input is a Laplace transformable

a@xpression. Hence, we integrate by using the following formula [111.

or
L5l F tag, .o apirges s (101K ePY gt (18)
s s+l s+k-1 ki
L r(ﬂ}p-sm_'_an(al..-..am.—.———,..., ---- :Pl,l"z....,l"n; "'"")k)
k k Kk p

which is valid for Re(s} > B, mék < n+l, uhere k,m,n are integers.

Thus (9} becomes

23/2
- Fil 1 4; a/p) 11
Bp

Stage 3.

At stage 3, we apply to (11) the follouwing "Kummer's transformation”

{3}
iFilai rs 2l = e (Fyl r-a; ry -2} (12)
and (11) reduces to
a3/2
— e®/P (F [ 3; 4; -alp] (13)
Bp

We recognize that the series in (13) is an instance of an Incomplete

Gamma function (3], because

1F1l 8 a+l; -xl = ax™@ yla,) (14)

Therefore, (14) finally becomes



i1

Yy 4{3,a/p) (15)

Hence, our research was spiit into as many parts as there are stages
in the above illustration. As it turned out decisions on designs of stages one
and tuc are somewhat interdependent, uwhereas stage three is totally indeperdent.
Of these three stages, the third stage give rise tec the most serious
difficulties, Thus our attention and emphagis was shifted most of the time to
problems of this third stage. As a consequence, Chapter 3 that refers to the
reduction methods occupies the focus of this thesis. Chapter 2 describes the

tuo earlier stages.

Chapter 3 concetrates on two groups of reduction methods of the

General izad Hypergeometric Function:

1. Those that are dependent on the number of parameters

{we call them "general reduction methods®),

2. Those that are independent of the number of parameters

(ue call them "special reduction methods™).

From the second group ue have been principally concerned with reduction
procedures of the following instances of the Generalized Hypergeometric Function:
oFa{2), uhich is actually the exponential function; gF;{z), which mainly involves
the Besse! functions; Fglz}, which includes the binomial functions; lFl(z). the

go called "Confluent Hypergeometric Functiona"; SFj(z}, the (Gauss)
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Hypergeometric Functions which include the Elementary functions in addition to

some Special Functions.

Chapter 2 begine with a short overview of the mathematical
background. The reader might want to consuit the references. However, we feel
that this is not necessary to capture the points of this thesis. Chapter 2
next demonstrates the policy we adopted for each of the approximately fifty
Spectal Functions so that our goal, viewing each Special Function as a
Generalized Hupergeometric Function whenever possible, can be accomplished
Wi thout too much difficulty in the integration stage, difficulty that could have
been caused as a result of generalizing the probiem. Finally, Chapter 2 sands
with the integration stage. Here, We indicate our major design decisions for the
table look up in terms of lemmas, These lemmas help us to keep the number of
formulas in our table down to a minimum, Moreover, we further ease the burden of
the table for composite function cases (rather "extraneous cases"} by
appropriately utilizing different integral transform properties that recursively
call our scheme as illustrated in this chapter (fig. 1) for relatively simpler

cases.
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Chapter 2

SPECIAL AND GENERALIZED FUNCTIONS. STAGES I - II.

The Generalized Hypergeometric Function has been defined as a series

{Chapter 1}). This series satisfies the differential equation:

d d d d
(z —={z -- + by-1}{2 - +by-1) ... (2 -—+bq-1} - (1)
dz dz dz dz .
d d . d
- z{z == + ay) (2 —- + ap} ... {2 -- 4+ ap]) y=60
dz dz dz

The series qu(zl converges under the following conditions:

1. For all values of z, real or complex as long as p £ g

2. For all values of z such that |z] <1, as long as p = q+l

3. For z=1 if Real(%bv - Eav) > 8
v=l v=]l

4. For z = -1 if Heal{%bv - ﬁav} > -1
val v=]

In case that p > g+l, the series never converges, except when 2z = @, while

the function is only defined uhen the serias terminates and this happens when at
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least one of the parameters in the Ll iist is zero or some negative integer

{sas Chapter 3}.

An obvious conclusion of Definition 1, of the Generalized
Hypergeometric Function is that any permutation of the members of Lj or L2

lists does not affect the Generalized Function.

A notion uwhich is particularly useful for our reduction purposes is

"contiguity".

Definition 1. Tuo Generalized Hypergeometric Functions

qu[ Lys Lz 2zt and qu[ L1*s L27s 2] {2)
are called contiguous if they are alike except for one pair of parameters in

which they differ by a unity.

Every Generaiized Hypergeowetric Function qu(z) is contiguous to
2p+2y others, Hence, the Hypergeometric Function oFi[ 2, by c3 <] is

contiguous to oFi[ a+l, b; ¢y 2} and obviously to five others,

1§ ue use the following abbreviations:

F = Fla, ap, +.. aps b1, b2, ser bq; z] 3
Flaj+l] = FI[ ay#l, ap, «ev , 3 bys +e0 4 bgs 2] 4)
F[blil] « FI al. az. evn p apt bltl, ves g bqs Z] (5)

then ue have the following contiguous relations presented in tables one and tuwo

for the Gauss Hypergeometric Functions and the Confluent Hupergeometric Functions

correspondingly.
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{by-2ay+(ay-api 2}F + a)(1-z)F[aj+1] = {by-a3;)F [ay-1)
{as-a))}F + ajFlaj+l] = ajFlay+l}
{by-a;-a5iF + a;(1-z)Flaj+1] = (bj-ap}Flay-1]
by lay+(ap-by)ziF + (by-aj) (bg~ay}zF [by+l)
= ajby (1-2)F [aj+1]

{by~a;-1}F + ajFlaj+l] = (by-1}F[b)-1}
{by-aj-az)F + ap{l-z)Flap+1l = (by-a)}F(a;-1]
{ay-a;) (1-2)F + (by-ay}Flay-1] = (by-ap)Fla;-1]
by (1-z}F + (bg-ap)zF(by+1] = byF[ay-1)
{ay-1+(1+ap-by}zIF + {by-ay)Fla;-1) = (bg-1) (i-2)F[by-1]
{by-2ay+(az-a;}zIF + az{1-z)F{ag+l] = (by-ap)Flap-1]
{by-a>-11F + ajFiap+l] = (by-1)F[by-1]
by (1-2)F + {by~a))zFlby+1) = byFlby-1)
{ap-1+(1+21-by}2IF + (by-ap)F[ap-11 = (by-1) {1-z)F [by-1]
bllbl-}+(1+al+a2-2b1)le + {by-23) {bj-a5) zF [by 41}

w by (by~1) (1-z)F [by-1]

Table 1.

(by-a;)Fla;-1) + (2a;-by+z)F -ajFlay+1] = 8

by {bg-1)F[by -1} = bj (by-142)F + (by-2;)zF[by+1} = B

(a3)-by+1IF - ajF[a;+1] + (by-1)F(by-11 = @

bjF - byFla}-11 - zFlby+l] = @

bj (a3 +2)F - (by-aj)zFIby+l] - ajbyFlaj+ll = @

(2)-14z)F + (by-a;)Flay-1) - {bj-1)FIb3-1] = B
Table 2,

(6)
(7]
(8)
N

{18}
(11)
(12)
(13}
(14)
(15}
(16)
17)
(18}
(19)

(20)
21)
(22)
(23)
(24)
(25)
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Generally, such relations exist for any Generalized Hypergeometric

Function (14].

0f great interest to us are also different transformations of the
Confluent Hypergeometric Functions as well as of the Gauss Hypergeometric
Functions. For exampie, linear transformations are applicable to both Confluent
and Gauss Hypergeometric Functions while quadratic, cubic and other of higher
oraer transformations are available for the Gauss Hypergeometrics. Analytic
tables for the quadratic transformations and some important qubic ones are
provided in the Appendix 2. For more information concerning the above

transformations the readsr should consu!t Goursat's paper [15].

The following differential reiations depicted in tables three and four
for the Conffuent and Gauss Hypergeometric Functions correspondingly atso hold

and are of great interest to us (3].

d" (al,ib)
--- oFtl 2, b; < zl = e oFy [ a+n, bn; cen: zl {26)
dz" (cl,
dn
(@), 221 JFylasn, by cs 2l = -—- 3L 0, by €3 211 (27)
dz"
dn
(c-nlp, 271" Fil g, by coms 2] = ——-0z%1 2ry0 @, bs o3 2)] (28)
dz"
(c-al,, 26731 (1-2)#0-C-N F 1 ( a-n, b; c; 2] (29)
dﬂ

= —e- [zC-8HN-1{y z)jatb-cC oF1l a, bs c3 21]
dz"
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{c-a),(c-b)
____________ (1-2)8+0-C-D _F\ [ &, b; c+n; 2]

dl’l
= ——-{(1-2)3*PC .F [ a, b; ¢ 2]}
dz"

(-1) {a) (e-b)
--------------- (1-2)871 JF [ aen, b; cen; 23

dﬁ
m —--[(1-2}2*1 oFi 0 a, by c; 200
dz"

(c-n)nzc‘l‘"(l-zlb'c oF1 [ a-n, b; c-n; 2]

dn
a ——=[28"L{1-2)D-CH oF [ a, by ¢ 2D)
dz"

(c-n)nzc'l'"{l-z}a+b‘°‘" oF1 [ a-n, b-n; c-n; 2]

dn
e —o-(z2671(1-213%07C F [ a, b; o 2Z1]
dz"
Table 3.
d" C1
--- {Fyl as c; 2} = -——- {F[ a+n; c4n; 2]
dz" icly

dn

m——[z84N-1 tFil as ¢; 21) = (alnza'1 1F1 1 am 3 2]

dz"

dn

— tF1l a; cs 21) = (-lln(l-c)nzc‘l'" 1F1l @ c-n; 2]
dz"

gn (c-a),

~--le"% (Fil a; c; 211 = 1150 § L e Z jFy [ a5 cen; 2)
dz" (el

(38}

(31)

(32)

(33)

(34)

{35)

(36)

i37)
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dn
--~le~ZzC-34-1 (F [ 3y ¢; 2] (38)
dz"

- (c-alna'zzc'a'l 1F1[ a-n; c; 2l

Table 4.

Most of the Special Functior:a (eg. Besse!, Legendre, Whittaker etc.!
are solutions of a particufar instance of the differential eqguation {1}, They
have some series expansions {instance of the Definition 1 of Chapter 1)}, they
satisfy properties such as contiguity etc. [3), [12]. Hence, ue will con;entrate
on the different relations essential to our design and ignore definitions and
comments on every single Special Function, unless really necessary. For an

extensive study of the different Special Functions the reader should consult the

Bataman Manuscript Project I3].
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2.1. THE FIRST STAGE

Our main concern during stage one of our definite integration scheme

is

1. To represent the Special Functions of the given

expression as a Generalized Hypergeometric Function

2. To be sure that the resulting expression has the
appropriate format to be successfully proccessed in

stage tuo.

Hence, we will be first concerned with the representation of Special

Functions in terms of the Generalized Hypergeometric Function.

As ue have mentioned, we have dealt uith approximately fifty Special
Functions. We have divided the set of the Special Functions inte two major
types. The first tuype includes all Special Functions that are directly
transformed through some relation into a Generalized Hypergeometric Function, and
the second type includes those that are expressed in terms of other Special
Functions and ultimately are expressed in terms of Special Functions of the firset
type. This classification has been influenced by the tendency to utilize and

manipulate as few Special Functions as is necessary.

Let us start the discusseion with the class aof Beassel functions.
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The Bessel function of the first kind J,(z} is of the first type and
is automatically transformed into a Generalized Hypergeometric Function through

the relation

zVY 22
K¢S JEupp— gF1l vty - -] (39)
TI'iv+l) &

The Modified Bessel function of the first kind [,(z} is of the
gecond type. It is transformed into a Besse! function of the first kind through

the relation

[, (z) = e V¥I/2 J (2e¥1/2) (49)

where J, (z} 1is of the first type.

The Bessel function of the second kind Y, (z) is a member of the set

of functions of the second tupe, for noninteger values of the index v because

Y (2} = (coelvp)d, (2} - J_, (2]} csclvy) {41)

where relation {41} holds for noninteger values of the index v and where
Jy(z) is of the first type. In case that v has an integer value, the

following relations hold for our Y, (z}

Yo(z) = lim Yy (2) {(42)
V2>
Yonlz) = -1" Yolz), neN 43)

It can be shoun that relations (42} and (43) imply that Y {z2) for n € Z is not
a function of type tuo (and hence certainly nct of tupe one}. Thus, Y,{z} for

v € Z gives rise to some complications in our scheme. The case Y,lz), n €Z
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has to be handled individually in stage one as well as in stage two. For an

extensive analysis see Watson and Tranter [4], 133,

The Modified Bessel function of the second kind K,(z} belongs to the
set of second type functions for noninteger values of the index v because

Ky{z} = 1/2 ¢ caciav) (I_,f2) - 1,(z}) (44)

hoids for noninteger values of the index v where 1,(z) is a type one function.

For v € Z ue have

K_n(zl = {(-1)0 K,.,(z) {45)
Kqalz) = lim K, (2], nelN {46)
v=->n

Thus the Modified Bessel function of the second kind K (2} is handled in the

same fashion as Y, (z) function is hand|ed.

The first kind of Hankel function Hv,llz) (also called the first kind
of the third kind Bessel function), belongs to the second type of functions and
can be obtained from the following reiation

Hy,1iz) = Jy(2) + 1Y, (2) ' (47)

uhere J,(z) is a first type function and Y, {2} a second type one. Obviously,
no special handling for the function Hv'l(zl for v € Z is required because

Yy(2) function takes care of that.

In 2 similar manner the second kind Hankel function Hv'zlzl. is a
second type function and can be obtained from the relation

Hy,2(z} = Jyl2) - iY,(2) 148}
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Let us consider next the Kelvin functions and those related to them.
They are all ultimately expressible in terms of Bessel and Modified Besse!

functions as shoun by relations (43} through {52):

bery(z) = 1/2 J iz 3714 4 172 J (2 7371/ (439)
bei, (2} = /2 J{z e=3MI/8) _ jj2 g (z 37i/h) (s8)
ker,(z) = 172K,z e¥i/%) 4 172K,z o774 (s1)
keiy(z) = /2K, (z e M/ _ 2K,z T/H (52)

and therafore they belong to our set of functions of the second tupe.

Particularly, here ue have

ber(z} = bergl(z) bei(z) = beiglz) {(53)

ker (z) = kergiz} kei (z) = keigfz) . (54)

Like the Kelvin functions, the Airy functions Ai(t) and Bi(t) are
ultimately expressible in terms of Bessel functions as the foliouwing relations

showus

ALY o 173 t1/2 o176 ) 0 (2i43/2/3) (55)
- 173 t1/2 o~%1/8 4, n2i43/2y3)

Bilt) = (/312 oMi/B ) 0 (2i43/23) (56)
+ (/31112 o=/, 1 12143/273)

thus they are also second type functions.

The l.omme! function a“.v(zl is of the first tuype as the following

relation show
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8y, y{2) =~ Fal 13 —mmey comemg = --) (57)

(p-v+1) (ptv+l) 2 2 A

The Lommel function Sugv(z) is of the second type because of the

follouwing relation

S",v{z} - sy.v(Z) {58)
p-v+l ptvel BV p-v
+ 2671 TPl Plea—--) (sinl——- 7} J,(2) - cosi-—- x) ¥, (2))
2 2 2 2

uhere e”_v[z) and J,{(z) are of the first tupe while Y,(z) is of the
second type, requiring for v € Z some special treatment {as indicated beforel.
Furthermore, relation (58} holds provided‘ that  (p-v+1)/2, (p+v41)/2 are

nonnegative integers,

The Struve function H,{z) 1is a second type function, since

Heim) = 21V &~ 1/Z (Tivrzn-l s, (2) (59)

Likeniee, the Struve function L ,(z) is of the second type because

Lydz) = eI/ y (7 oin/2) (68)

After the Bessel family of functions Wwe come to the Gsuss

Hypergeometric Functions.

The Legendre functions Pv'”(zi and Qv'”iz) are both first tupe

functions since



1 z+l
Py ul2) = - (==-}2 JF [ -y, val; L-pg 1/2-2/21  (B1)
Fil-p) z-1

ebTigl/20 (g4v4l)

uv,”{Zl ¥ cesee—ses—ee———- z““"‘"‘l (22-1]5‘,2 62)
2YH ] (v43/2)
pvil  pava2 3
Fpl ——mm- , e s vi-; 279)
2 2 2

Particularly, here the following relations hold

Py.8(z) = P {2) 0, g2 « 0,(z) (63)

furthermore, for 4 = @ and v s n =@, 1, 2, ... uWe get the Legendre

Polynomials.

The (Complete} Elliptic integrals {functions) are also type one

functions and are given by the following relations
Kk} = /2 F101/2, 1/2; 13 &2 (664)
E(K) = x/2 pFy1 -1/2, 1/2; 1; K2 (65)

The Orthogonal Polynomials of Jacobi are of the first type and are

given by the fo!louing relation

n+a
Pr, (@, 8) ) = € ) P10 -n, niasfsls asls (1-x1/2) (65)

n
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The Orthogonal Polyncmials of Gegenbauer Cn.v{xl. Legendre P, x)
and Tchebichef T.(x) and U,{x) are of the second type given by the following .

raelations

(2v},
Ca,vix} = =womo—es Pn, tv-1/2,v-1/2) ) (€7)
tvsl/2),
Pnixl = Cn,llzb" {68}
Tn(xl = n/2 Cn'gix} (69}
Uplx} « cn,l{"} (70)

We next consider the Confluent Hypergeometric Functions [i6]. The

WUhi ttaker function M. .(z) which covers the whole spsctrum of the Confluent

(2%}
Hypergeometric Functions, is a type ocne function and is givan by the relation

My, (2) = 2V/240 o212 (Fi T 1/20p-xs 2041y 2) (71)

The Incompiete Gamma function #la,x) is also a type one function
and is given by

yla, ) = aix® 1Fy [ a; a+ls -x] (72
1F1

The second Whittaker function N“,n(z) is a tupe tuwo function and

givan by the relation

F‘(z} (73)
I(1/2-p-xi TF(1/2+pu-0)

as long as p does not take integer values and the quantities 1/2-gy-x and

1/2+u-8 are not negative numbers or zero. Otheruise, H‘."(z} is considered

separately in both stages one and two.
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The Parabolic Cylinder function is a type two and is given by

D,(z} = ov/2+1/4 z-1/2 uv/2+1/4.1/4(22/2) {74)

for ve=na=08,1, 2, ... ue have the Parabolic Cylinder Polynomials.

The Bateman function k,(z}, the tuwo Error functions Erf(x) and
Erfc(x), the Incompiete Gamma function ['la,x}, the exponentia! integral and
related functions Eilx), sil{x}), Sitx) and Cilx) are alt type tun functions

and are given by the falliowing relations:

kpylzl = Tval)~ U, 1/7(22) {75)
Erflx) = 1/2 4(1/2,%2) (761
Erfcle = (ma)1/2/2 N_174,1/4 %) 7n
Ta, ) = xlo-lV2ex/Z )0 o0 (78)
Eitex) = e¥l2y ) gix) (79)

Silx) = #/2 - 1/2 1727102 V2 1) alix)  (80)
+ 172 13211212 y ) 45 glix)

Cite) = -1/2 13/2e=1x/2-U2 y 15 glin) (81)
172 Y2122 y o gl-ind

gilx) = -¢/2 + Sifx) (82}

Laguerre Pelynomials have been assigned to the first type set and are
given by the following relation

n+o
x}) » ( ) 1F1f -n; a+l; ») {83)

n

Lﬂ-c
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The Orthogonal Polynomials of Hermite, special cases of the Parabolic
Cytlinder functions, belong to the second tupe set and are given by the folloning
relation

He () = &% 0 () (84)

In a similar way we have considered products of Special Functions
which can be expressed as a single Generalized Hypergeometric Function. Thus the
product of two Lessel functions Jv{z)J”(z) is of the first type and is
transformed into a Generalized Hypergeometric Function through the relations (85)

and (39)

eF1l o 21gFil o5 z) {85)
= oFal p/2+0/2, p/24a/2-1/2; p, @, pta-1; 4zl

On the other hand, the product 1,{z)X, (z}, uhere I, (2}, K“tzl are modified

M
Besse! functions of the first and second kind respectively, belongs to the second
type and is ultimately expressible in terms of functions of the first type, for
noninteger values of the index g. Similar arguments are app!icable to similar
producte of the so far mentioned Special Functions. Table 5 provides products

of Generaiized Hypergeometric Functions which are expressible in terms of oneg

General ized Hupergeometric Function.

Fy [ a, by asbel/2; 21)2 (86)

- 3F2I 23, asb, 2b; a+b+l/2, a+2b; zZi

gF1( g1 zlgF [ p: -2l 87)
= oF3l py /2, p/241/2; ~z2/6}
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1F1l @ ps 211F1l a; 3 -2) (88)
= oFal a, p-as p, p/Z, (p+l)/2; 22/4)

1F10 as 2a3 21 Fy 1 B: 28; -2} (89)
= SFgl (a+f)/2, (a+f+1)/2; a+1/2, B+1/2, a+fs 22/4)

oF1L @, B3 a+f-1/2; zIoFil @, B: a+fsl/2; 2) (98)
= oFo1 2a, 28; a+f; 2a+428-1, a+f+1/2; 2]

Fila, B af-1/2; 21,50 a-1, Bs a+f-1/2; z} (91)
= oFz!l 2a-1, 28, a+f-1; 2a+2f-2, a+f-1/2; z]
Table &.

Due to the importance of the area of "products of Special Functions®

in our scheme, we plan in the near future to further investigate this area.

Relations (33) through (81) actually show the way we have chosen to
transform a given Special Function to its corresponding Generalized
Hypergeometric representation, whenever this is possible. As it has been already
indica_ted, we may need many intermediate steps. For example, the Orthogonal
Polynomial of Legendre is first transformed into a Tchebychef which is next
transformed into a Jacobi and at l(ast to a Huypergeometric form. An obvious
question that arises is, "why do we need the "intermediate steps"? UWhy do we
not transform the Special Function in one step to its Generalized Hypergeometric
representation? For example, uhy is the Legendre Polynomial not given
immediately by refation (92) ?

Pa(x) o oF3[ =n, n+ly 13 1/2-x/2) (92)
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The reason that we decided to follow this very "conservative" strategy is as

folious:

At every level of generalization some particular
properties and knowledge might be applicable,
and yet is not generalizable and therefore not

applicable in a higher level.

The history of Special Functions reveals that people have always come
up with "neu probiems” requiring definition of "new Special Functions" which
generally have some "tight" or "loose" connection (and which generally add new
chaoe to the already existing one) with the set of "fifty" we selected to work
with. Hence, we feel that our strategy would best serve further possible

additions of new Special Functions te the already existing set.

To give support to our argument, ue give as an example relations (33)
and (94) which hold only for Besse! functions and some Orthogonal Polynomialss

raspectively.

Y. {2z} = (-1)"Y,(2}, neN (93)

-n
POLY,(-x} = (-1)" POLY,(x}, n €N (94)
uﬁere POLY,{x} is the Orthogonal Polynomial of Legendre or Tchebychef or

Gegenbauer or Jacobi, stc.

In the light of these remarks, it is seen that the aforementioned

strategy also facilitates attainment of our second objective (mentioned at the
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begining of this section) and provides more flexibifity in interfacing stages one
-and two. For the time being, let us investigate the second stage and see its
problems, From time to time we will return to stage one and resolve interfacing

problems of atages ens and tuo.
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2.2. THE SECOND STAGE

in the integration stage we determine if an expression is Laplace
transformable or Fourier transformable or any other kind of transformable

expresaion.

We will now add to the already mentioned definition of Laplace

Transforms some definitions of other Integral transforms.

Definition 2. MWe define the Fourier cosine, sine and exponential

transforms to be the following corresponding integralss:

wa(x}cos{xgl dx (S5)
L 00 sinixy) dx (96)
L0077 ax (97)

Definition 3. UWe call the Hankel transform of order v of the

function f(x) the integral

Laf(x)Jv(xgl (xy}uz dx (98)

uhere y is a positive real variable.

Definition 4. We call the Y-transform of order v of the function

f({x} the integral
LT 00y, g ) 12 o (99)

uwhere y is assumed a positive real variable.
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Definition 5. MWe call the K-transform of order v of the function fix)

the integral

o
L 00K, ) G 172 ax (108)

where y is regarded as a complex variable.

Definition B. We call the Stieltjes-transform of fix} the integral

L 2
L7500 teaygr L ax 1121)

where the integration is over the positive real x-axis, and y is a complex

variable ranging over the complex y-piane cut along the negative real axis.

Ke next give scme key remarks in terms of lemmas

Lemma 1. The Hankel transform of a function f(x) reduces to the
Fourier sine transform for v = 1/2, Particularly, the following reiation holds

20
L% 000y 00 002 ax = @012 [Fodsint) dx (182)

Proof This is immediate from definitions (36} and {98).
Similarly, we have,

Lemma 2. The Hankel transform of a function f{x) reduces to the
Fourier cosine transform for v = -1/2. Particularly, the following relation
holds

oD
L0000 /200 0ap/2 eax = (2m1172 [THxdcos txy) ox (163)

Lemma 3. For the exponential Fourier transform the foliowing relation

holda
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L5 t0e7b (184)
o [Ptetaeti0lcostuy) dx - i f) LFl)-Fl-x}lsinixy) dx

Proof This is an immediate consequence of relations {95), (9b) and

{97).

Lemma &, The K-transform of order v of a function fix} reduces to

the Laplace trangsformgs of that function for v = 21/2. Particularly,

/21172 {069 ax (195)
e LTHu0ky jpixy) 172 o
- L‘f(x)l(_uzixgl [xglllz dx

Proof [t is immediate if we notice that

T
Kysp(z) = (--1172 g2 {188}
2z

As we saw in a previous paragraph, we divided the set of Special
Functions into two major types. In particular we sau that most kinds of Bessel
functions, were expressible in terms of the Bessel function J,, except for some
indices. A natural consequence is that here the K and Y transforms can be

expressed in terms of the Hankel transforms for certain indices. Particularly,

tie have.

Lemma 5. The folloiting relation holds as long as the index v is not

an integer.
L5 00y, ) 0172 o (107)
= cotlve) j:f(x).lv(xg} (xg)l,z dx
- cscivy) Lcﬂade[xgl (xglllz dx
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Proof This is an immediate consequence of relation {41) of this

Chapter.

A similar relation to retation (187} can be also established betueen
Hankei and K transforms. Hougver, it is of very limited practical value since

the Hankel transfcims for y complex very rarely converge.

Lemma €. The Stieltjes transforms of a function f(x} where x lies on

the positive real axis and y complex, are iterated Laplace Transforms. Namely,

w -
L7800 by 1 ax (198)

[ )
~-xt -¥
. j;[.ﬁf(x)e" dtle™™Y dy

The above mentioned relationships among the different transforms are
not the only ones. Hence, the following relationships also exist betueen the

L.aplace and K transforms.

L5 00%, ) ) 12 g (189)

wl/2p-v v41/2

“©
. e L"{j; (x2-12)V-1/241/2-v¢ (4} dtle ™Y dx
T'(v+i/2)

for Relv} > -1/2

L7600k, g ) 1/2 ax (110
L1227V, 172~ .
S LT12g2v-172 [ [041/24 007t i at
T'v+1/2)

for Relv) > -1/2

We selected to follow the path of lemma 4 and not the paths of relationships -
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(183} and (118), becauee lemma &4 provides us with more powerful and efficient
schemes for our design. The same arguments apply for refation (111} that exists
betueen Hanke! and Laplace transforms 2= wel) 3s other existing relationships of

the above transforms.

j:at"/z'“{' [[:’f{x)Jv(xg) (xg) 172 dxle=t? gt iy
B-V-l Lwtvfz'lllif[{2t31/2]e-tls dt

The interconnections indicated in the above lemmas, piay an important
role in our design at stage two, thus avoiding redundancy and keeping the

necessary knouwledge doun to a minimum.

Ot course, the Integral transforms are not exhausted by the
definitions that have been given so far. Me have the Meilin transrorms, the H
transforms, the Kontorovich-Labedev transforms and miscellaneous transforms such
as the Fractional integrals, Hilbert etc. In generzal, the interconnection
existing among them is {oose and consequently each one requires individual
attention. However, ue should still iocok at each one in conjunction uWith the
others. MWe il! not make any more definitions nor we will extsnsively study hers
aach particular transform - for more information on the different integral

transforms see Sneddon and Bateman [18], [il).

e will next describe the ideas which are useful for our design (fig.
1), and applicable ta sach of the above mentioned transforms, prefarably

selecting examples with Laplace and Hankel transforms.

A design for the Integral Transform algorithm should incorporate tuwo
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major components:s the integration process, and the different Integral Transforme

properties,

We decided to form a table which contains as fex formulas as possible.

This strategy has the following consequences:

1. The overall design of the system becomes algorithmic in the sense
that the system works deterministically, knouwing what it can really do and uhat

}t cannot, and does not waste time by trying different approaches.

2. The main burden and difficulty of the problem shifts from stage
tuo to stages one and especially three, uhere we have to reduce the Generalized

Hypergeometric Functions to some Elementary and/or Special Function(s}.

As far as the Integral Transforms properties are concerned, our
general policy consists of applying them in stage two. at the Generalized
Hypergeometric Function tevel. Hence, stage tuo can be divided into two

substages.

Suostage 2.1 Utilize the Integral Transforms properties.

Substage 2.2 Integrate.

Let us first consider substage two and the decigiens that must be made

there.
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The major decizions in substage tuo concern the contents of the table
look-up. We decided that we should accept formulas in our tabie look-up only if
they contain Generalized Hypergeometric Functions and then from this smal lar set
select the most general. Furthermore, lemmas one through six play a key role in

deciding about the generaiity of such a formula.

Houwever, ue allou exceptions and we incorporate formulas that do not

contain Generalized Hypergeometric Functions, under the follouwing circumstances.

1. The Special Function(s) was (uere) not
succeseful ly transformed into a Generalized

Hypergeometric Function.

2. The expression resulting from stage one

uas not integrated at stage two.

For example, the Bessel function of the second kind VY,{z} for
integer values of the index n, as we have already seen, is not expressible in
terms of the Bessel function J,(z) and thus not in terms of a Generalized
Hyperceometric Function. Inevitably, the cases where the function Y,(z}, n €
Z, are involved regquire special consideration and their oun formulas of
integration. The same arguients apply for the Modified Bessel function of the
second kind K,(z}. Apart from Knlz), Yulz), no Bease! function requires any
particular attention, since every Besse! function is expressible in terms of
Jy(2), Y,iz) and Knfz). vet, ne Z. A similar situation also exists for
products of Speciai‘ Functions that are not representable as Generalized

Hypergeometric Functions.
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Inability to integrate an expression at stage two is mainly caused by
the fact that the argument, the number of parameters and the functiocnal factor of
the Generalized Hypergeometric Function do not meet the proper requirements and

restrictions that the integration formula imposes.

For example, to apply formula (18) of Chapter 1, to an expressgion,
the conditions

Re(s) > @, m+k < n+l, for integer values of m, k and n,

should be satisfiad.

The "intermediate steps" policy we selected to follow in stage one
is obvicusly of great help here and it obviously has support of very practical
value, For example, whsnever we utilize a function for our tabie look-up
invalving the Whittaker function H""(zl and not a qu(zl we can

autgmatically handle all special cases of !‘l"”(z) too.

The key point in the formulas that do not invelve Generalized
Hypergeometric Functions - the "exception formulas" - is, to provide the most
general representation in the table look up, Failure to do that ‘uill result in
not finding integrable cases. This is a situation that occurs when the input
expression contains a Special Function uhich is reducible to some other aof a
lower level. Since, ue do not want to involve any reduction proczdures in the
first tuo stages, it becomes necessary to represent the "exception formuias" in

their most general representation (even if mathematically they are equivalent).

Gensral formulas at the Generalized Hypergeometric level are also

incorporated in the design, for cases uith finite intervals of integration [(11].
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Notice, houever, that stage three is absolutely necessary and is
utilized in every single one of the above mentioned cases. The incorporated
formulas mentioned in the exception cases are stil! very general and consequently
their outputs are even more so. Figure tuo below depicts the new version of

figure one, describing the scheme in a more precise fashion.

I l I |
- |GENERALIZED | ‘/~ |GENERALIZED |
LEVEL II. JHYPERGECONETRIC| - ~——ewemmm ;;JHYPERGEUHETRICI
[FUNCTIONS - | _ -7 {FUNCTIONS |
1 | S~ i l
! PR |
/ Pt |
/I - |
Le” |
i | i
.. { SPECIAL I [
] FUNCTIONS | |
.. i i |
. INTERMEDIATE | i |
7 |
LEVELS. / ]
. !
' |
i |
/ |
J V.
|SPECIAL
SPECIAL I AND/OR

| FUNCTIONS

|
l
LEVEL I. ~-->] FUNCTIONS
I
| |

|

|
IELEMENTARY  |——->

I

|

Figure 2.

Finally, we uill consider the role of the different integral transform

properties.

As we mentioned earlier, our general policy requires that any property
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should be applicable at the Generalized Hypergeometric Function level. In order
to be more precise and incorporate the exceptions cof the last paragraph, the
different integral transform properties should be generaily applied in the last
level of generalization of the Special Functions, just before we are to look up
the table and integrate. This policy changes only in cases where such a
postponmeat of the application of the Integral transform property until stage
two, causes irreparable damages in our procedure 2t stage two. Therefore, the

Integral transforms prcperties have been considered in tuo types.

1. Properties that can be applied in substage 2.1,
independently of what kind of Special Functionis)

the input expression contains.

2. Properties that have to be applied after stage one

for certain Special Functions.

Thus, for example, all the well knoun properties such as the "scale
property" applicable to almost any integral transform is a tupe one property.
Properties of the second type cannot be applied after stage one for certain
Special Functions and our scheme is unable to proceed successfully to stages tuwo
and three. For example, the property

Lf{asinht}] = L:ﬁp(au)gtul du {112

where gip} = LIf{t}], cannot be applied after stage one, for the Besse! function

Jg. as in, for example,
Jglasinht) e Pt (113)

since after the completion of the first stage we get



]

al
gFil 1 - - sinh®tle-Pt (114)

4
Expression (114} cannot be integrated since our table doss not contain any
formulas with such functional arguments while it is too late to apply property

(112).

This example could be solved by two recursive calis to our scheme
(fig. 1). First, by calling the scheme as described for the Laplace Transforms,
and second by calling the same scheme in which the Laplace Transforms properties
and Integration formulas have been substituted with Hankel Transforms properties

and Integration formulas [18). Namely, our scheme still work as follows:

Given the integral

[ JgtasinhtiePt at (115)

We first apply property (112) and we get
L3, taunrgw) u (116)

where )

o) = [Jp(tieut au | (117)

The firet (Laplace transforms) call to our scheme (fig. 1}, for the expression
(117), gives
glu) = (uZe1)-172 (118

The second (Hankel transforms) cali to our scheme for the expression {116) given

the result {118), praovides
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r2 172 T ((v+1)72)T-v} (T'{v/241))2 ay
16vV/€a~ -

e e 112§ ()2
T(v+ )T ((1-v}/2) 2

TivIiM{v/241)T (1-v/2} ay ay
P L — 91/2 Jys2t==1d_ys21(--}
Tiveld 2 2

Similarly, the Laplace transforms property

Lo lelopt at
- p-v/2 irﬁvIZJv(2u1/2pllzlg(ul du

where

gl = [Fioreut at

is & type two propertu.

Thus, the integral
o
Ll uhept gt

Is solved again by two calls to our scheme.

The first call, a Laplace transforqs call, gives

glu) = l:%JI(tle'"t dt = (u4+1)-3/2

and the second call, a Hankel transform cali, provides the final result

------- y3/2 3y (w/6)Ky (y/6)
20 (3/2)

The Laplace property (125)

‘Cot"f(tzle"pt dt

- 271/25-172 l:%v-ze-llﬁ pzuzﬂv(pulg(llz u=Z) du

(119}

(128}

(121)

(122}

(123)

(124)

(125)
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where ©
g = [firePt gt (126)

is also a type two property.

On a first examination, a program that can take the Integral
Transforms of approximately fifty Special Functions would imply it would be
necessary that quite a large number of formulas be incorporated in the table
look-up of our second stage. [t turns out that relatively very few formulas are
needed. For example, formula (18} of Chapter 1, is applicable to a large number
of Special Functions [16), [3], (13!, namely the Bessel functions of the first
and second kind, both Modified Bessel functions, the tuwo kinds of Hankel
functions, also the Struve functions, the Lommel functions, and the Kelvin
functions, the Whittaker, the error and both Incomplete Gamma functions, as welil
as to certain products of Bessel functions, for almest all the values of their
indices and for linear as well as squars rcots of linear functions of the
argument. Furthermore, in cooperation with general formulas of other Integral
Transforms, formula (19} of Chapter 1, contributes in integrating composite

functions like Jg{sinht) and t'lJlit“l}. as we have already shown.

Our main source of integration formulas has been the Bateman
Manuscript Project which approximately contains 680B integral formulas for the
different transforms. Table 6 contains some ksy formulas for the Lapiace
transforms. Table 7 provides some key formulas appiicable to both Laplace and K

tranaforms.
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-«
f' t-lan(all ree .amﬂf'l. e .l"ni (l t}kla-pt dt (127}
s e+l s+k-1 ki
SIS £ Tt AN 7 TP S —— S Y A
k k k P

Rel(s) > B, mék < n+l, where k,m,n are integers.

Lom-ly, iyl e ax (128)
avHT (u+vI T (y-v)
. = e —uY
ZB-lgvrigl/2ivp it/
-v  pevel y?+al
oFl ===y =——- ; ml/25 —--—- 1
2 2 a?
Re{u) > |Refvl], a > 8
L"tnw-le-At AT NEL (129

1F10 un=xnt 288 a tle~Pt at
e (p+A) VP (vt
Fal vl; sy-Kys oo olp=Rns 2B1s o-o 2208
aptp+A) -1, ... ,ap(peAr 1]
M= i+ oo 4y, Relvell) > 8, A e 1/2{ag+ ... + ay)

Table 6.

LOH-31ZF Cap, oon s ag by, en s by -M@IK, ) ) 12 ax (130)
- 2M-2y1/2-BP ((gav) 12T (-} /2)
ps2Fql Als <or 23 WVI/2, (Wev1/25 Br. oeo JBgs NG
p < g1, Relu} > [Re v|
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L5128 ta, B; valy -A2AK, () xg) 172 o a3
= vHaa-BytB-v-3/2r (v4118) o g 4-glu/N)
Rel)) > 6, Relv) > -1

L‘?ﬁuw-me-a"zlﬁ[ 1724415 2utl; ax?IK, (xy} dx {132}
28-8-1/2-1/4- (3gvix) /2, x-p-1

T'2ut1IT 2pevet e/ Baly, o/ Gal)
2k = -3u-v—x-172, 2m = pev-x+1/2

Relg) 2> -1/2, Re(Zu+v) > -1
Table 7.

Hence, approximately thirty formulas are sufficient in conjuction with
the other mathematical machinery wWe have mobilized, to exhaust all entries
{around 588} in both lLaplace and K trarsforms of the Bateman HManuscript.
Actually, only a feu of these formulas are needed to cover approximately 80% of
the corresponding entries. Furthermore, numerous other cases can be solved that
are not given explicitly in Bateman’s tables. For example, expression (113} of
this chapter does not match any entry of the Bateman'a Tables. Houever, ue

succesded in golving it by calling twice two different ganeral formulas of the

Bateman Manuscript.

Houever, the potentiality of keeping very few and general formulas
around in the table of our second stage would be of limited value if we were
unable to complete successfully the third stage, the reduction aof the Generalized

Hypergeometric Function to some Elementary and/or Special Function(s).
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Chapter 3

THE REDUCTION STAGE

In the reduction stage the Generalized Hypergeometric Function is
reduced, if that is possible, to some Elementary and/or Special Function{s).
Priority is always given to those methods that reduce the Hypergeometric Series
into elementary functions and then tc those that reduce to the most common
Special Functions, such as Error, Bessel, stc . The effort in the reduction
stage increases as the number of the series parameters, and subsequently the p
and q values, increase. If the reduction is unsuccessful then the series qu(zl
is returned. Therefore, a complete reduction package should also incorporate
schemes for the summation of the Generalized Hypergeometric Functions. In our
thesis we did not extend our ressarch in the "summation" domain. Of course, the
reduction process uWill try to provide reducible forms of the Generalized
Hypergeometric Series even if the series has a numeric valus argument and it has

been guaranteed that the series does not converge.

Example the Generalized Hypergeometric Function
F1l a, a+1/2; ¢; -5l 1)

does not converge according to our convergence rules (see Chapter 2). The

reduction procese Will navertheless return:
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1 -c¢ 1
2 P (R )
c-2a8-1,1-c sgrtiB)
- - - {2)
i-c
23 2
(- 5) 24 gamma {c)

where P, {2} is the Legendre function.

Similarly, if the argument is eymbolic the reduction process wuitl
return an ansuer assuming proper intervals of validity for the symbolic

references,

We fesi that techniques similar to those in our reduction scheme
can be aiso utilized in order to determine the closed form of a Generalized
Mypergeometric Function with numerical argument. For a very interesting approach
to the problem of series summation consult "A Calcutus of Series Rearrangements”
by Gosper (20].

Our approach to Definite Intsgration undoubtly also shous the strong
interdependence that the problem of Definite Integration has with the problem of
series summation.

In the “"reduction" sections we provide our main conclusions and the
necessary theory in terms of theorems, |lemmas and corollaries. When necessary,

atgorithme and illustrations are provided.
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3.1. GENERAL REDUCTION TESTS

In the general reduction part we perform reductions independent of the
number of parameters.
Given the Generalized Hypergeometric Functien qu[ Lys Los arg) where

Ll - {81, az...-, ap!' and Lz = {bl; bz.--o’ bql' thB fO”OHing |Bmm35 thd:

Lemma 1. 1f L =Ly Nlz and r = |L|, then

qu[ Lys Lps argl = p-rFq—rE Ly-Ls Lp-Ls argl {3)

The above lemma simply states that common numerator and denominator
parameters can be eliminated with a subsequent subtraction in the subscripts p

and 4.

Lemma 2. If -n € L, n € Z¥, then

n alaz: v -ap
qu[ Lis Lps argl =1 - [} —--monme arg + (4)
1 blbz. . .bq
n 31(a1+1)az(az+1)...ap(ap+ll

() ememmmmmeer e argc + ...
2 bl[b1+1}b2{b2+1)...bq(aq+ll

n al (al+1} {31"'21 ra (al+ﬂ-1} res woe ap{ap+ll (ap+2] v '[ap-l-ﬂ-l)

208 LA T U SO
n bl 'bl"’l) (b1+2) "o {bl"’n-l) sre Pre bq [bq“'l) {bq-l-Z) sre ibq"'n_l)

arg"

Hence, the Generalized Huypergeometric Function reduces to a

polynomial.
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Proof It can be easily seen that all terms after the nth one in the
hypergeometric series expansion are zero. Hence, the series terminates and a

poiynomial ie derived,

Corollary 2.1. If n in lemma 2 is zero the Generalized

Hypergeometric Function reduces to one.
Lemma 3. If n€lp neZ U {0} then the Generaiized Hypergeometric
Function does not have any meaning.

Proof The denominators of the series expansion will contain zeroes

after the nth term.

Df course lemma 3 always holds as long as no cancellation of the
parameter n occurs. Hence, lemma 1 should aiways be applied first. This ia

mot always true for lemma 2 over lemma 3.
Lemma 4. The polynomial expression (4 is an instance of some
Or thogona! polynomial (s} according to the following cases:

a. lf |Lpl =2 and |Lj| = 1 then expression (4) reduces to one of

the fo!lowing polynomials:
i} Tchebichef, ii) Legendre, iii} Gegenbauver, iv) Jacobi.

b. If L] = {Lo] = 1 then expression {#) reduces to one of the

following polynomials:

i) Hermife, ii) Laguerre.
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c. If |Lj] = 2 and jLp| = & then expression (4} is also reducibla to

one of the polynomtalts mentioned in case b,

The three cases mentioned in lemma & wi!l be investigated and
discussed in the section concerned with special reduction tests, uhere our

special reduction techniques will be used.

Cf course, someone might suggest that lemma 4 and its anticipated
discussions are redundant because lemma 2 itsalf is sufficient to successfully
reduce the Generalized Hypergeometric Function. This is actually not true for

the folilouing reasons:

1. [# the polynomial pp{x} ie returned instead nf its expansion, the
reader becomes instantiy aware that he is nou dealing with a particular

polynomial, the Orthogonat polynomial of Legendre, and not an arbitrary one.

2. 1f, say, ths Tchebyshev pofynomial T ix), n € N, is returned
instead of its expansion ue are certain that no "blou up" is likely to occur as a
result of exceeding the storage capacity of a machine. T {x} will be returnad
very quickly. Its expansien for a large n, n € N, uill either exceed storage
capacity or a huge polynomial will be returned which is difficult to comprehend

and further manipuiate (i.e. differentiate, factor etc.).

For those cases in which it is not possible that an Orthogonal
polynomial be returned and in which n is relatively large, our implementation
sill first return a warning and then return the Generalized Hypergeometric
Function instead. [t will take chances and try to return the expansion only if
ordered to do so. Houwever, such a situation is very unlikely to occur in any

"real" problem.
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Lemma S. I1f a numerator parameter of the Generalized Hypergeometric

Series qu(zl exceeds 3 denominator parameter by a positive integer, say k, then

+

the series qu(zl can be expressed as the sum of k+l p-qu—l(z} 8.
Specifically, the following relation holds:
qu[ 81+k, az.u., ap‘ alp hz, b3|oov. qu ZJ = (Sl
k
(9] p_in_l[ 32. 33..... ap: bZ' b3'000, bq} ZJ +

k 32830 eed
T -
1 alb2b3-.|bq

Z p-qu-lt 32+1, a3+1..... Gp+1; b2+1. b3+1»----bq+1= z) +

k aplaz+llaglagtl)...apla,+l)

( } ceememneee
2 aplag+llbg(bpel). . by lbye)

zzp_qu_l[a2+2,33+2....,ap+2;bz+2.b3+2,...,bq+2: z] +

k az(a2+ll...[a2+k*2}{az+k-1)... ...ap(ap+ll...(ap+k-21{ap+k-1l

() S — - R z
k al (al“’ll ces (GI-I-R-Z' [31+k-1, Ter 8 cbq[bq+l} L (bq+k'2i [bq"‘k-l}

p_qu_l( az'l-k, 33+K, vew 9 ap"‘k; b2+k. b3+k’ e g bq"’k: Z}

Proof By induction.

Lemma 5 constitutes a surprisingly useful rule, which is incorporated
in the first reduction phase. Such a series splitting, though it does not
actual fy fully reduce a quEzl. simplifies the reduction by decreasing the p and
q values. MWe illustrate our ideas in the example 1.

Example 1. Consider
t3 Jpitl/2)2 gt (5)

after stages one and two have been completed, we get



52
6p~% sFal 1/2, 1, & 1, 1, Ly p~ 1 (7)

nou, at stage three and after a trivial gensra! reduction rule, expression )

becomes

p~% oFol 1/2, 43 1, 13 -p~1) (8}

then applying our general "splitting” rule, (8} reduces to
6p% [ 4F L 1/23 15 -ph) - 32 p7l Fy 03725 25 p7h1 4 (@
+ 9/16 p2 (Fy [ 5/2; 31 -p~11 - 5/38 p~3 yF 1 7/2; 45 -p7l1]

which ultimately yields:
gp~¢ o172 P7L [ 1g01/2 p7h) #3215 g ptp7l 4 (10)
+ 9716 p2 -p132 1y qt-p7h) - 5/96 b7t M_g/p 3/20-p7 0]

vwhere Hl.j is a Whittaker function.

We proceed with the algorithm GR for the general reduction part.

Algorithm GR. Given
qu[ Ly Lps 2] (11

Step 1. Find the intersection L, of the two parameter lists Ly and
Lp. [f it is nonempty substitute (11} uith

p-ILIFq-ILE[ Ll-LS Lo-Ls zl 12)

Step 2. 1f any numerator parameter, exceeds a dencminator parameter
by a positive integer k, then return k+l p-qu—I{Z) 's to be processed by

Algorithm GR.
Steg 3. Search for a nonpositive integer n in L; list.

Step 4. Search for a nonpositive integer n' inly iist.
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Step 5. If n, n' found then
If n>n" then return the

General ized Hupergeometric Function.

If n’ only found then return the
General ized Hypergeometric Function.
Step 6. If |Lyj =2 and |Lp] =1
or {Ls} =1 = |y
or {Ly] =2 and |Lp| = ®
then dispatch to the special reduction tests algorithma,
else rcturn a polynomial of degree n according to the formuia 4%).

Step 7. Return the Generalized Hypergeometric Functien.
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3.2. SPECIAL REDUCTION TESTS

The Special Reduction tests constitute the second phase of the
reduction stage. Here, different algorithms are performed which are dependent on
the values of p and q of the Generalized Hypergeometric Function. The general
idea in this phase is to divide the set of Special and Elementary Functions intec
subsets depending on the p and g values that their series representation has.
Therefore, algorithms are constructed according to the particuiar subset of
Special and Elementary Functions and the available mathematical machinery
applicable to the subset. It should be noted that these algorithms search first
to return E!smentary or common Special Functions. In case that they cosplately
fail, the series is returned. The most important tools here are differentiation,
the different transformations such as linear, quadratic etc. and the contiguous
functions relations. Differentiation and contiguous functions relations can be
utilized in any subset independently of the values of p and q. However, this is
not true for the different transformations (linear, quadratic, etc.). A
characteristic of the differential and contiguous relations is their ability to
transform the Generalized Hypergsometric Functions into some new ones uwhich ars
associatesl of the old. Hence, differential or contiguous relations are
utilized whenever parameters in the Generalized Hypergeometric Function differ
Hith the corresponding series of our table by some intager quantity. Similarly,

transformations {quadratic, cubic ele.) are applicable to a Generalized

! The serias pF [ ag+my, «0s LN bi#ny, e v bgtngs 2] for m, n; i =
1. 2, ... ,p and j =1, 2, ... , q integer numbers, are called the associates
series.
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Hypergeometric Function whenever some particular relationship hoids among its

parameters.

In the second phase, reductions are easy for the cases gFglz), gFj(z},
1Fg{z), and the difficulty increases significantly for higher p’s and gq’s. MWe
have been mainly concerned uith the Confluant Hypergeometric Functions reduction,
1F1{z), and the Gauss Hypergeometric Functions, oF1(2), that include in addition

to certain important Special Functions, the Elementary Functions.

3.2.1. EXPONCNTIAL BINOMIAL AND BESSEL REDUCTIONS

Lemma B, For z € C reliation (12) holds

22 2
pFal s 121 = 14+z4 -+ .o+ —-+...= e U2}

2! ni
Hence, in case of aFE(z) as lemma 6 indicates, we have all the
exponential, trigonometric and hyperbolic functions, since all of their series

expansion is of type (12).

Lemma 7. For any a, z € C relation (13) '«ids
ala+l) (aln
lFat a: H Zl = 1 + az + -—-—=—- 22 ¥ see ¥ == Zn + o = tl-Z)-a {13)

2! n!
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thue category {Fp{z) includes the Binomial functions.
Lemmz 8, For any v, z € C relations (14), (15) hold

gF1l svely -22/6) = (2/217Y Pivel) J, (2) (14)
gF1l svaly 22/6) = (2/2)7Y Tivel) I, (2) (15)
particularly for v equal to 1/2, -1/2, 3/2, -3/2 relation {14) - and similariy

(15) - reduces to the following relations

oFLl s 3/25 22741 = 2 T3/2) #71/2 271 gin(z) (16)
gF1l s 5/2s 22/61 = 4 T'65/2) #°1/2 (27 sin(z) - coslz)) (17
gF1l 1 1/2; 22/4) = T11/2) 77172 cost2) (18)
gFil s -1/2; 22161 = -1/2DP -1/ Y2 24z cosiz) + sinlz)) {19)

In particular, the following important theorem holds

Theorem 1.1 The Besse! function Jy{2), is expressible in finite
terms by weans of algebraic and trigonometric funcions of z, when v is half of an

odd integer. Namely, the foliowing relations are true

2 n/2J (-1)7 (n+2r) !
Jnets2(2) = 112 {gintz-ner2) 2 - (20
2z re8 {2r}!(n-2r)!{22)2"

L(n-1)/2] -1 (ne2r+)
+ coslz-ng/2) T oo o -1

r=8 (2r+1}!(n-2r-1}! (2z}2r+1

2 /2 (-13" (n+2r) !
Jop1s2@ = =112 [costzengs2) 2 -(21)
Tz r=8 (2r)!(n-2r) i {22)2"

I Based on the work of Lommel, Studien uber die Bessel'schen Funktionen(lLeipzig,
1968), pp. 51-56,
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Lin-13/2) (-1)F (ne2r+l) !
- sinfzeng/2) T ————ommcmeme e moem ]

re@ (2r4+1) ! (n-2r-1) 1 (2222741

Houever, when v does not have such a vaiue, then ths Bessel function
Jy{z) is not so expressible. This fact has been established by Liouviile's

theorem uhich ue describe next,
Theorem 2.1 The Bessel's equation for functions of order v  has no

nontrivial seolution expressible in finite terms by means of elementary

tramecendental functions, if 2v s not an odd integer.

3.2.2. CONFLUENT HYPERGEOMETRIC FUNCTIGN REDUCTIONS

Lemma 9. The following ralation holde

1Filas cy 2] = e? Fil c-a; c; -zl i22)

The above linear tranaformation is aiso kroun as a Kummer's

transformation.

Lemna 18. Given {Fy[ a3 c; 21 such that a-c is an integer number
then jFil a; c; z] is reducible to the exponential or the Binomial or the Error

or the Incomplete Gamma function.

1 Journal de Math. Y1 (1841).
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Proof

1. If a-c=8, then

tFilas o5 2 = (Fil ag a5 21 = gFgl 3 321 = €7

We distinguish the follouing cases:

(23}

2. If a-c is a positive integer, then from lemma 9 and lemma 2 ue

- get:
tF1l a5 c5 2} = 82 (Filc-a; o3

since c-2 is a negative integer.

3. If a-c is a negative integer, ue

3.1, If c =1 then a must be

Corcliary 2.1

{F10 8: 1; 2} =

3.2. Let us assume now: a-c = -m,

Hith the follouing inductive argument:
Base: [t c-a=1, then

i. If

erflx) = 29712 Fi 1 1725 3725 -2

-2] = 6% (1+2)3°C {24}

distinguish the foilowing cases:

8. Hence, and according to the

1 (25)

me=1,2,3,... , then we proceed

a=l/2 and c=3/2 then because

(26)

it follous that {Fy( @ ¢; z] reduces to the Error Furztion.

2.
yla,x) = al® 1Fyi as

holde true, it follous that

function.

Agsume now that for:

reduces to the Error or the Incomplete Gamma function.

iz also true for: c-a = m+l.

I1f a#l/2 and/or c¢#3/2 then because

a+l;-xl 27}

1Fil a; c; 2} reduces to the Incompiete Gamma

c-a = m, 1F1l a3 3 2} = ¢Fi1 a3 a+m 2]

We uill prove that this

{28)
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Utilizing the contiguous function relation:
(a-c+1} jF1l a3 o3 2l - a {Fil a+ly c5 2] + (e-1) (Fil a; c-1; 2] = @ (23]
and substituting (28) into (29) ue get

1F1 0 a: asmel; 2] = -a m~1 1F1[a+1:a+m+1: z] + ml(asm 1tF1 0 asa+m; z] (308)

thus the right hand side of expression (38} is expressed as a [inear combination
of tuwo other Generalized Hypergeometric Functions uhich both have the property of

having: c-a=m and for which case our induction hypothesis is valid.

Coroitary 18.1. For any complex a and nonnegative integer m the

follouwing relation is true

1F1l as a+m; zi = (31}
m-1 (a+l1}(2+2)...{a+m-1)

( ) ——— 1Fil a; a+l; 21 -
] (m-1)!

m-1 ala+2)...{a+m-1)

{ ) o 1Fy [ a+l; a+2; 2} +
1 (m-1}!

m-1 afa+l) {a+3)... (a+m-1}

{ ) o 1F1 0 a+2; a+3; =zl -
2 {m-1)1

m-1 ala+l) (2+2)... (am-2)
B Lo S S R — 1F1 0 a+(m-1); awm: 2]
m-1 {m-1)!
Proof Retation (31) can he easily proved by induction on m, given

relation (29}.

By comparing relations (28) and (27} we can see that

erflx) = 1/2 o(1/2,%9) (32)
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Hence, the Error function is an instance of the Incomplete Gamma
function. Therefore, our reduction procadure should be able to return the Error
functions instead of the Incomplete Gamma function, whenever this is the case.
Lemma 11 and lemma 12 along with lemma 18 complete the reduction for the

Incomplete Gamma and the Error function cases,

Lemma 11. For m and n nonnegative integers the follouing relations

hold:
1. For m > n,

(FLl 172403 3/24m; x] = (33)

(3/2)y_py M-ne3/20, @ gD
DN L — [e™ Fy [ 1/2; 3723 x11)

2.
1F1[ 1/72-n; 37/2+m: x] = (34}
(372}, eX dn d™
(1M e o { XM ___[ 7% 1F1[ 1/72; 3/72: %111
(1, (L+m), xM " ™

3. For n2>2mnm,

1F1 0 1/2-n; 3/2-m; x} = (35)
e xM dn d"
S ) L S— e————me Lo x1/2 1, /2 F 0 1725 3725 X1
(1-m) (-1/2) dx" dx™

Proof Relation (33) can be easily proved from relations (34) and (37)
of Chapter 2. Likeuise, relation (34} can be deduced from relation (37) and (38)

of Chapter 2, and finally, relation (35} follous from relations (36) and (38) of

Chapter 2.
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Lemma 12. Given the conditions of lemma 18 and furthermore assuming
8 and c are not symbotic quantities then ;F;I a: c; 2] ie reducible to the

exponential or the Binomial or the Error functions.

Proof The proof is a conseguence of lemmas 18 and 11.

Particular cases of the Confluent Hypergeometric Functions set are the
Orthogonal Polynomials of Hermite and Laguerre as the following lemma describes.

Lemma 13. The Generalized Hypergeometric Function 1Fy[ -n; a; x]

reduces for any neZ*, aeC into Hermite or Laguerre polynomials.

Proof From relations (36), (37} and (38)

Hegn(x) = (20" (1/2}, 1F1[ -ns 1/23 »2/2] (36)

Hegneg 00 = (=200 (372}, x (Fy L -n; 3/2; »%/2] (37
n+a

Lp,a®d = € 1 (Fy [ -ng asl; x] (38)
n

We can easily deduce the assertion.

if we compare (3€) and (37) with (38) we can conclude that Hernmite
polynomials are particular cases of the Laguerre polynomials, particularly the

folioning relations hold:
Hepn(x) = (=207 nt L, _1/2(x%/2) (39)

Hegnsy () = (=207 nt x Ly /5 (x%/2) (68)
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The reader might have expected by now that a lemma similar to iemma
11, 'holding for the Error function, should have been presented here to increase
the reduction capabilities to Hermite polynomiais. Of course we could have
proved similar to femma 11 reduction relations for the Hermite polynomials but we
would not have increased at al! the capabilities of our reduction because
differentiation of Hermite polynomiats provides Laguerre ones. Hence, and after
a little inspection of the expression {38) the redundancy of such a lemma here is

obvious.

Bassal functions are also particular cazes of Confiuent Hupergeometric

Functions as iemma 14 states.

Lemma 14. The following relation is true:

{Fil a; 2a; 221 = oZ gF 1 ;3 a+1/2; 22/4) (61)

In other words, a Confluent Hypergeometric Function (Fyl a; c3 2]

reduces to a Bessel type of function if

c=2a (42)

Theorem 3. Given an integer number @ then the Confluent
Hypergeometric Function {F{{ a; ¢; 2] reduces to the exponential the Binomial or

the Error or the Incomplete Gamma functions.

Proof Assume @ = m, where m = 1,2,3,... then

1Frim ey 2zl = 1F1[ m: {c-mlems 2) {43)

axpression (43) and lemma § give:

FiEm c3 2] = e yF1[ c-m; (c-ml4ms -2) = e 4Fyla’;c’s-2] (44)
11 EA | "1
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Where a’= c-m, c'= {c-ml+m and it is a’-c’ = -m. Hence, lemmas 18 and 14 apply

to the right hand side of relation (44} and the lemma is proved.

Lemma 18, Any Confluent Hypergeometric Function §Fjl a3 c; 2] can be

exprassed as a Whittaker function N““(z}.

Proof This is obvious from relation (45),

Mg, ul2) = 2#/2 e72/2 |F) [ 1/24p-0s 2u41; 2] (45)

Hence, any Special Function wuwhich is in particular a Confluent

Hypergeometric Function is an instance of the Whittaker function Hx’"(z).
Atgorithm "F{-Red" depicts our conclusions of the present subsection.

Algorithm 1Fs-Red. Given 1F1{ a; ¢c; zl

Step 1. If 2a = ¢ then return to pF; cases
Step 2. If a-c ¢ Z then go to Step 7
Step 3, If a-c =8 then go to gen-red algorithm
Step 4, 1f a-c > @ then apply transformation (22)
and go to Step &

Step 5. 1f a and/or c not numeric quantities

then return the Incomplete Gamma function «la,x)

gelse return the Error function Erf(z)
Step 6. If c 1s 1/2 or 3/2 then return the Hermite poiynomial

else return the Laguerre polyncomial
Step 7. If aeZ then apply transformation (22}
and go to Step 3

else return the Whittaker function H"”(zl.
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3.2.3. GAUSS HYPERGEOMETRIC FUNCTIONS REDUCTIONS

In this subsection epecia! reductions are performed that lead to
Elementary Functions as well as to the Special Functions of Legendre, Incomplete
Beta and Orthogonal polynomials of Tchebichef, Legendre, Gegenbauer and Jacobi.
The machinery that is utilized for reduction is the contiguous function
relations, differentiation, and different transformations (linear, quadratic

etc.}

3.2.3.1. THE LIMIT-REDUCTION METHOO

One of our methods in accomplishing reduction is the "limit-reduction"”

method. Our method works in the following fashion:

Algorithm 1.

Given the hypergeometric function:

oF1 U &, b; c; 2] (451

Step 1. Detect that the hypergeometric function (46) is the limit of
gome other hypergeometric function, as far as their parameter part is concerned,
which other hypergeometric function can be processed by a quadratic

transformation. Namely, a relation
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limit oFj(a", b'3 ¢’y 2’1 = oF;[a by c; 2°) (46A)
P1->|1 ‘
"n>1n

holds, where r; i =1, 2, ... , n are quantities involved in the parameters

a', b’ and ¢' and furthermore

]

SFila’, b’ e’ 2’1 = fxFla’, b'*;s c'"s 2} (46B)

is the guadratic transformation, where 2z and 2z' are assumed arguments of the
variable x. {Relation (4BB} is not any particular quadratic transformation, it is
just a general "picture" of any guadratic transformation which help us express

the aigorithm in a better way.)

Step 2. Take the same limits on this quadratic transformation. Thus

take
limit 2F1[ a’, b’y ¢'y 2'] {46C)
r1->|1
rn->lrl
= limit fx} Ftimit SFla’, b*°3 "5 2']
P1->|1 r1->I1
rn=>ln rn~>1n
w1 glxd Fiia’’, u''’; ™' 2°]
Step 3. Cali the "reduction algorithm" to process the hypergeometric
function:

ZF]_{ al!l' bil" l:"" Z'] (QGD}
and muitiply the result with gix),

Step 4. In case that z = z' perforn the appropriate adjustment in
the result of setep three and thus provide the reduced resuit of the

hypergeometric function (46},
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Of course, "limit-reduction" is applied whenever ue are certain that
the second cal! to the reduction aigorithm at Step &4, will be successful. The
above method ie utilized to reduce the hypergeometric function into Binomial or

Elementary Functions, We illustrate this method with a simple example.

We are given the hypergeometric function:
oF1 0 374, S/; 1/2; 29 %7

Step 1. It is true that:

limit oFy [ a/2, 1/2+a/2; b4l/2; 22) = oF 1 3/6, 5/6; 1/2; 28]  (48)
a->3/2
b->8

therefore the following quadratic transformation is applicable

SFil ar2, 1/2+a/2; b41/2; 22/12-208) = (1 - 2/2)2 F( L a, b; 2bs 2] (49)

Step 2. Ue next take the limits of relation (43) and ue get

bimit oFy 0 a/2, 1/2+a/2; 641/2; 22/(2-2)%) (50)
a->3/2
b—>8
= limit (1 - 2/2)3 oFy [ &, bs 2b; 2]
a->3/2
b->8

= 1-z2/213/2 F 1 372, 85 8; 2)

Step 3. Processing of the right hand side of the expression (58} by

the Reduction algorithm we get

S }3/2 (51)

Step 4. And finally adjusting the arguments we have
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_________ PR (52)
61142)3/2 6(1-2)3/2

We next pay a closer look for the above propuosed "limit-reduction”

me thod.

Lemma 17. Given the hypergeometric function oFj[ a, b; c; z], then
there exists a guadratic transformation if and only if the numbers
2{1-c), zla-b), x(a+b-c) (53}

have the property that one of them equale 1/2 or that tuo of them are egual.

Lemma 17 constitutes the criterion for accepting a given
hypergeometric function for further manipulation by several reduction methods
involving quadratic transformations. Of course, the limit reduction method is
ons of them, As it fipally turns out, there is aluays a way to reduce a

hypergeometric function which meets the requirements of lemma 17.

A table of all the existing quadratic transformations is provided in

the Appendix 2.

Lemma 18. The following relations hold:

2
Z
oF U al2, -al2; 1/2; —--m-- 1 = (1 -2)73/2 (564)
61z-1)
1-a 1+a 2? 2(1-z)1-2/2
ol ===y —=-3 /2 ==-—-- | (S5)
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a+l 22 (2-z)2
Fil ar2, ---; 1/2; ------ ) {S6}
2 (2-2)2 23(1-2)2
c-1
Frle/2, -3 ¢ bz(1-22] = (-2l (57)
2
c+l 1-z)i-c
Fi1tc/2, ——-3 c3 42(1-2}] ® -—-voeee- {58}
2 1-2z
oFi el e-1/2; 2¢e-1; 42120423 /211401172, 212y -2y o {59)
o (1 + 212 4 172202 q14z)1-c
421/2(142)1/2
Fil ¢, e-1/2; 2c-1; - cemeee-] (69)
[(14211/2471/2)2

- Ust-eizl72 4 (142)1/2)2c

Proof Utilizing the following quadratic transformations

oF1t a, by 205 2) = (1-2/2)73 F( [ a/2, 1/2+a/2; b41/2; ~vem--- ] (61}

Fila, 1-a; e; 21 = (1-2)CLoF [ ¢/2-2/2, (c4a-1}/25 €; 4z(1-2)] (62)

oFila, 1-as c; -2] = (+2)¢-1 (+11/2 4 ;1/2y2-2a-2¢ (63)

421/2(142)1/2

oF1 U c+a-1, c-1/2; 2¢c-1; -------oemme ]
t+2)1/2,21/22

Wwa can deduce the following relations

bimit oFy [ a/2, b-a/23 b4l/2; ~=-mmn 1 = (1 -2732 (B4)
b->8 4(z-1)
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1-a+2b l+a 22 2(1.z) (1-a)/2
limit oFg[ =aeeee NIRRT - Pp— ] & e {65}
bh->0 2 2 4i{z-1) 2-z
a+l z {2-2)2

limit oFyl a2, —==3 b41/2; (-=-12] & —omoomme (66)
b->8 2 2-z 23(1-z)3

c+a-i
limit oF; c/2-a/2, ~---- s cr bz{l-z)1 = Q-zlC  (67)
a->6 2

c-a+i (1-z11-¢
Vimit oF [ €/2+4a/2, —=---3 c; bzl{i-2})] = —---oee- {68)
a->@ 2 1-2z

421/2(142)1/2

Vimit oFy [ c4a-1, c-1/23 2c-1; -----mmmommomme ] = (69)
a->8 {(14211/247172)2

= (1421312 4 J1/232¢-2(q 45 l-c
421721420172
limit 2F1[ c-a, ¢-1/2; 2¢-1; - —— ] (78]
a->@ (Q+2)17247172)2

= (Qazdl-c(z172,(142)1/2)2¢

Hence, relations {54) through (68) hold.

As it should be noticed, Lemma 18 is nothing more than the application
of Algorithm I, into the elligible subset of quadratic transformations for limit
reduction. Equivalent or special cases for some of the relations (53} through
{68) are given in the Appendix 3, uhich has been selected from the existing

literature (31, [21]1 and [221.

Lemma 18 can be further generalized by incorporating into it
differential relations. Thus the hypergeometric function

Fil a, a+l/2; 3725 2) (71)
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by means of the differential refation

(c-a),(c~b},
------------ {1 - z)a+b-c-n oFil a, by ceng 2] (72)

dﬂ
= --= [(1 2)3*P°C ;F [ 3, b; c; z])
dz"

can be reduced to the hypergsometric function
oF [ a, a+l/2; 1/2; 2] {73)

which can be further processed successfully by relation (5B).

Before ue proceed o any generalization of Lemma 18 we will use
through lLemmas 19, 280 and 21 to investigate cases in which we attempt to use
differential and contiguous function relations to achieve reduction to & desired

hypergeometric function in the way we did in our previous example.

Lemma 13, Given the hypergeometric function
Fil m/n, b; k/1; 2] (74)

then under the following conditions the relation

2(T +x} = ? +y form k,x,yeZandn, | €Z- {81} (75)
n
cannot be satisfied
1. For any y and one of the following conditions
al 21~ k and nim

b) 21 | %X and na~| m

2. yodd, n|m and 2| | k
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Lemma 28. Given the hypergeometric function (74) then under the

follouing condition relation (75) is satisfied.
Yy I8 even and one of the fallowing conditions holds
a 21l |k and n|m

b) 21 =n and 21 = n | k-m

Lemma 21, Given the hypergeometric function (74) then reiation (75)

ie satisfied or not according to the following criterion:

1f y iseven and if 2] ~f k and n ~| m then (75} is satisfied

depending on whether 2in divides kn - Z2im or net.

Lemmas 13, 28 and 21 can be easily proved by means of elementary

number theory.

Hence, lemmas 19, 28 and 21 indicate when it is effective to use
differentiation and/or contiguous function relations to a hypergecmetric function
in order to match a hypergeometric function of the tuype:

oFil a, a~1/2; 2a; z1 (78}

Of course similar criterions can be found for cases like

Fi1l a, a-1/2; 3ay 21, oF;( a, a-1/2; 4a; zl (77N
and so on. Houwever, we are not interested in such criterions for our present

problems,

Lemma 22, Any hypergeometric function of the form
oFil atm, -a+ls c; 21 m, leZ, a, ¢, z€C (78)

can be represented in any of the following ways
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Fl a'sn, -a’; ¢c: zl {79}
sFila’, -a"'+n; c; 2] (8@}

where a*, 2°' el and n e Z.

Lemma 23, For m, ne€N a, b, z € C the follouwing relations hold:

(n-m+1/2) ,(372) 1
oF U a+m, by 1/24n; 2] = —- _— ————————————— (81)

(-1)™ (@), (1/24n-m-b}  (1/2-3) ,_p (1/2-b) _p,
dm dn-m
-zp-a __rgenn-o-t/2 (1-2)340-1/2 p 1 a, b; 1/2; 2011
dz" dzn"-m

where we assume here m < n

oFpla-m, by 1/2-n; z] = —moemoomoome e 2 /2(1_z)mel/2-b-n  (g3)
(1/2-n}, (1/2-rm) | _p

dlll dn-m

= -2™0-12 V2 e, by 1425 2D

dz" dz™m

whetre hers assume m < n

1l a-m by 1/24n; 2] » - {83)
{1/2+n-3), (1/2-3) ,(1/2-b)

Z1/24a-n(q_zymén+l/2-a-b

dlﬂ dn
cee[ ZMM-a-1/2 ___1(1_2)840-1/2 £ [ a, b; 1/2; 2131
dz" dz"
1 d”
oFil asm, by 1/2-ny 21 = ——cemoeeeee zl-2 [ Z@¥mn-172 (84)

(a)  (172-m), dz"
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dl'l
—1zV2 Fila, b; 1725 211)
dz"
w2,
BRI LT V2T Y ——— {1-z}1#n-a-m  (g5)
(-1)™ (a+m-n) o (1/2-b) (@), _p,
dn dﬂl"n
—-tll-z)am-l Zl-a [z340-n-1 F ¢ 3, by 1/25 2011
dz" dgz™n

where n <MW

oFyl a-m, b3 1/2-n; 2z} = A 21/2 (1_z)1/2-b  (gg)
(1/2-n) (1/2-8)

dl'l dm—-n

S I Lo —— [ Z-n-a-1/2 (1_z)@+0-1/Z oF, [ &, by 1/2; 2111

dz" dz™n

where ug assume herse n < m.

Proof Relation (81) can be proved from relations (31} and (38) of
Chapter 2. Similarly, retation (82) can be proved from relations (32) and (28)
of Chapter 2; relation (83) follcws from {(29) and (38) of Chapter 2; relation
(84} from (27} and (28) of Chapter 2; relation {85) ¢rom (31) and (27) of Chapter
2y and finaily reilation (86) can be proved from relations (32) and (29} of
Chapter 2.

Taking into account Lemma 22 and provided that b = -a for relations
(81) through (8B), Lemma 23 constitutes the generalization of ths relations (54}

through (56) of Lemma 18 and the "limit-algorithm".
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Lemma 26, For x €2, yeZtU B!, a b, c, z€C the follouing

relations hold:

Fila, by c; 21 & =mccmccmmmme e 87}
(clg[c+g-a-x)x_g(c-a~-112+g-x)a_b+1/2+x

zl-c {1 - z}g+c-b

d¥y g%y
—— [ %Y (1-2)79 . [ z1/24x-y

dzY dz*Y
da-b+x+1/2

dz-bx+1/2

where a-b+x+1/2 28, x 2y 2> 0

L%

}
Fila, by c; 2] = w—eeceeee- -~ i (88)
(C)u(°+9‘a'“’x-g{a+1/2+“}b—a—x—1/2

z1-€ (1-z)ytc-b

dg dx-g
o[ Z%*@ (1-2)3 _____[ Z&-23-x-1/Z (]_z)a+x+b-c-y

dzY dz*"Y

___________ [ -1 oFi [ ax, asx+l/2; c4y; 21111
dzb-a-1/2-x

where a-b+x+1/2 <8, x 2y 286

Fil a, b 5 2] = =w—eeeeeceeeaooo—e E --------------- (89)
(clx{c+x)g,x(c-a-112+g-xla_b+1/2+x
d* gy
21-C (1-z)**C-b ___((1-2)PC oo [za+x+1/2 {1 -z} C-a-b+y-x
dz* dz¥-*

da—b+x+1/2

___________ [z26+U-1 (1.z)28+42x-c-y+l/2 oF1 0 a+x, a+x+l/2; cty; z111]
dza-bx+l/2

where y > x > 8, a-b+x+l/2 > 8
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1
2Fil a, by c; 21 @ wommeeeeeeee - -— . (98
(c), {c4x} y-x {a41/24x) y_a.1/2-x

gl-c {1-z)*+c-b
d* dy—x

e {{1-2}0"C oo [zC+Y-x-a-1/2
dz* dz¥=x

gb-a-1/2-x
---------- (291 Fyl asxsl/2, atx; esys 2111)
dzb-a—llz-x

where y > x 2 0 and a-b+x+l/2 < @

1
ZFI[ a, by €1 2] = e e 21+u_a (81)
(a-ulu(clg(c+y+u-a-1/2}a_"_b+1,2
d dY
e[ 28°C ___[ Z8-W+1/2 (1_jyHiciy-a-b
dz¥ dzY
da-H-b+1/2
........... [zC+U-b-1(1_z)2a-2-c-WH/Z E, (g, asl/2-us cay; z1D1]
dz@-H-b+1/2

where W i= -x, a-w-b+#l/2 >0, x<B, y>=0

1
Fila, by cyzl = - zl4u-a (32
(@~} (0)  (a41/2-)y 51 /240
a¥ aYy
- [g8C ___[gC+y-asu-1/2
dz¥ dz¥
db-a-1/2+u
----------- (zo-1 2F1[ a+l/2-u, a-u; céys 2113)
d4gb-a-1/2+u

Wwhere W := -x, a-u-b+l/2 <9, x <8, y >80,

Proof Relation {87} is a consequence of relations (32) and {29) of
Chapter 2: relation (88) of (32), (29) and (27) of Chapter 2; relation (83} of
{32), (28) and (29) of Chapter 2; relation {98) of (32), (20) and (27) of Chapter
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2: relation (91) of {27}, (28) and {29) of Chapter 2; and finally relation {92}

isa impiied from relations (27) and (28} of Chapter 2.

Lemma 24 through lemmas 19, 28 and 21, provide a generalization of the
relations (58}, (59), (68) and (81) of Lemma 18, and of course %to our reduction-

limit algorithm.

As it has been demonstrated, differentiation is one of our tools for
reduction. A careful consideration of the different formulas involving
differentiations shouws that it might be the case that differentiation will be
applied "dangerously" many times, That is, ue might be differentiating an
expression o many times that the continuousiy growing expression finally exceeds
the limited storage capacity. It is our resporsibility to provide formulas which
utilize differentiation to a minimum; however, this of course does not quarantee

that the aforementioned protiem will not arise.

I[f we inepect the differentiation relations (26} through (33} of
Chapter 2, uwe conclude that in order to increment a parameter of a hypergeometric
function by one, uwe should diffferentiate the hypergeometric function once, and

80 on.

We establish the "lower bound" for the number of differentiations that
must be applied to the hypergeometric function

oF [ a, b; c; 2] (93)

in its reduction to the hypergeometric function
oF 11 a+l, bemy c4ny 2zl (94)

where |, m, n integer numbers, to be:
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1. f[max{l,m,n) - minfl,mn}|, if there exist at lsast two integers

among |, m and n with different signs.

2. maxi{l]|, Im|, [n|}, if al! of them have the same sign.

Acceptance of the above lower bound ia further supported by the fact
that no linear transformation of expression (393} can provide a better lower

bound,

It is not difficult to see nouw that all of the formulas in Lemma 23
have accomplished optimal bounde in the number of differentiations apptied. This
is not true for the formulas of Lemma 24, it can be accomplished if we divide the
present cases of Lemma 24 into further subcases (a rather routine and boring task

by nou}.

Tha following theorem summarizes our results of the above lemmas.

Theorem 1. The following hypergeometric functions reduce to Binomial

and/or Elementary Functions

1. oFit a+l, -a+m; 1/24n; 2] (95}
2. oF 1t 1/2-a+l, 1/2+a+m; 1/24n; 2) (96)
3. oF1(1/2-a+1, -asm; 1/24n; 2) (97}
4. oF 0 a+l, asmel/2; nel/2; 2] (98)
8. oFyl asmy/ng, asr+l/2; 2asky/1y; zl (39}

fo‘ a € c' Ig M, n, r, IIII, kl [ Z, l'll, ll € z - {B!

and under the follouwing conditions

211 f kg and ny | m
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or 2|1 =ng and ny | ki -m

Proof This is a consequence of Lemmas 19 through 24,

The above lemmas and theorem are materialized in the foliouwing final

“reduction-limit" algorithm.

Algorithm ~Fy-RL

Given the hypergeometric function
oF1 [ alpha, beta; gamma; arg) 1160)

then

Step 1. Standardize the parameters of the hypergeometric function by

using the Gauss-Euler transformations (16@) and {(1B]).
Step 2. If alpha =2 + 1, beta=-a+m and
gamma = 1/24n, unerea€C, I, m, neZ
then go to step 4
Step 3, 1t alpha - beta + 1/2 is an integer number
then go to step 7
else go to step 12

Step 4. Call algorithm Ii and standardize tha parameters of the
hupergeometric function. Thus the quantities a, I, m, and n Will be calculated
and the hypergsometric function put into the form

oF [ alpha’+m’, -alpha’s 1/2+n’; 2l (181)
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Step 5. Call algorithm I to process the hypergeometric function
2F1 [ atpha’, -alpha’; 1/2; zl {192)

Step 8. Call algorithm I1I and dispatch to it the result of step 5 as

ueii as the quantities m, n, then go to step 1.

Step 7. Call algorithm IV, test the parameters and calculate the

quantities x and y.
Step 8. If "test" in step 7 fails
then go to stap 12

else set alpha’ to the value of "alpha + x"

Step 9. Cal! atgorithm I to process the hypergeometric function
oF1 [ alpha’, alpha’-1/2; 2alpha’; z] (183)

Step 18, Call algorithm ¥ and dispatch to it the result of step 3. as

uell as the quantities x and y.
Step 11. Return result.

Step 12. Return fall.

The following algoritm is actually the implementation of lemma 22.

Algorithm 11. Given
oF1 U a+m, -a+n; c; 2] (104)

vhere m, n are integer numbers, then

Step 1. If the product mn is a nonpegative number
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then go to Step 3
else go to Step 2
Step 2. If |m| > {n| then go to Step &4

Step 3. Set a’ eqgua! to a+m and return
il -a’+fmen), -{-a’); c; 2] (105)

Step 4. Set 2’ equal to a-n and return
oF1{ a’+mn}, -a’; c; 2] (166}

The main function of Algorithm Il is to standardize the parameters of
the hypergeometric function 2nd minimize the number of differentiations that must
bs performed at a later stage of the iimit reduction algorithm. Hence, for
example the hupergeometric function

oF1 1 a+1088, -a-958; c; 2) (187)

wil! need at ieast 1958 differentiations to be reduced to the hypergeometric
function

Fila, -a; ¢ 2] (198)

However, if algorithm Il ia initially performed to expression (187} it will
reduce it to
oF; [ a'+58, -a’; c3 2] (189}

wuhere a' := a + 788

thus, reducing the number of the regquired differentiations to S@.

The following two aigorithms called by the major algerithm oF1-AL are

the implementations of the ideas presented in lemmas 19, 20, 21, 23 and 24.
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Aigorithm Ii{l. Given the hypergeometric function

oF1 [ a+m, by 1/24n; 2] (118}
then
Step 1. If m 1is positive then go to step 5
Step 2. If n is negative then go to step 3
else go to step 4
Step 3. If |m] < |n] then apply formula (82) and return
else apply formuta (86} and return
Step 4. Apply formula (83) and return.
Step 5. If n positive then go to step 6
else apply formula (84} and return.
Step 6. If m < n then apply formula (81) and return
else apply formula (85) and retﬁrn.
Algorjthm IV, Given
oF1 [ alpha, beta; gamma; z] (111)
then

Step_ 1. Separate the numeric from the nonumeric part in the

parameters of the hypergeometric function {111}

Step 2. 1f the nonumeric part satisfies the condition 2a = ¢

then go to step 3
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else go to step 1@.

Step 3. Standardize the numeric parts as follous:

Numeric part of atpha = m/n
Numeric part of beta = am/n+r - 1/2
Numeric part of gamma « k/|

and in such a fashion that all fractions m/n, k/] are irreducible.
Step 4. If 21 = n then go to step 5
eise go to step 6
Step 5. If n | k-m then go to step 11
Step 6. If 21 | Kk then go tc step 7
else go to step 8

Step 7. If njim then go to step 11

go to step 18

Step 8. If n|m then go to step 18

Step 8. 1f 2in | kn-2im then go to step 11

Step 18. Return "not satisfied”.

Step 11. For y = 2, 2, &,... find the first integer number x

satisfying the relation

k/ |=Zm/n+y
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and return the values of x and y.

Algorithm V. Given oF1l a, bs c; 2! and x, y values, then
Step 1. If x > 8@ then go to step 2

go to etep S

Step 2. If x>y then go to step 3

else go to step &

Step 3. If a-bx+l/2 > 8 then apply formula (87) and return

apply formula (88) and return

<]
o
[+

Step &, If a-bsx+l/2 > @ then apply formula (83} and return

appiy formula (90) and return

Step 5. Set u 1= -x

Step 6, if a-u-b+l/2 > @ then appiy formula (91) and return

apply formuta (92) and return.

a
[/: ]
(1]

The algorithms presented are a demonstration of the main flouw of
control. UWe have tried to minimize the details wuwhich contribute to the
efficiencg‘ of an implementation. Some of them are mentioned but we avoid

repeating them in other instances since they are obviously implied,

We conclude the "limit-reduction of the hypergeometric functions”

section by iflustrating the function of 5F;-AL aigorithm in an example,
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Example Given the hypergeometric function
oF1 1 a+5/6, a+7/3; 22+23/3; 4z(l-2)) 112}

then

Algorithm oF;1-RL: Step 3 is satisfied and at step 7 algorithm IV is

cal led.

Algorithm IV: Given the hypergeometric function
- {112), step 2 is satisfied and at step 3 ue have

n/n =56 r=-2 k/I =23/3 (113)
Steps & and 5 are satisfied, hence step 11 provides

x=3 yed (114)

and return to Algorithm oF;-RL,

At step 8, we set afpha’:= a + 23/6. At step 9 we call algorithm 1

Hith input
oF1 b a+23/6, a+18/3; 2a+23/3; z] {115)

Algorithm 1

Step 1 It is true that

Pimit oFy [ a+23/6-c/2, (c+2a+28/3)/2; 2a+23/3; 4z{1-2)] =

c->8
= oF [ a+23/6, a+18/3; 2a+23/3; 4z{1-z}} (116}
Step 2 1t is also true that

oF1 1l a+23/6~c/2, (c+2a+28/3)/2; 2a+23/3; 4z(1-2)) = {117)

= (1-2)~23-28/3 £ (¢, 1-c; 2a423/3; 2]
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Step 3 Hence, we can get
limit (1-2)723-28/3 op, [ ¢, 1-c; 22423/3; 2 = (118)
c->8

e (1-2)729/3-23 F [ 8, 1; 22423/3; 2]

Step 4 For the right hand side hypergeometric
function of relation (118), the "reduction algorithm" provides 1. Therefore

algorithm I returns back:

(1-z)-20/3-2a {119}

Given the results (114) and {118) algorithm oF;-RL at step 18 calls

algorithm V.

Algorithm V Steps 1 through 3 of algorithm V are
satisfied, therefore formula (87) ultimately provides the result (128) which is

also the final result of our principal algorithm
-16/27 4-3-17/6 (1_z)-a-14/8 za+7/3 (1 _4(1-2)2)9/2 (12e
[20736a% + 442368a° + 3502656a%+12188288a + 15662088} z%
-(72576a% + 141358423 + 18227168a + 32552448a + 38420488) z°
+(93312a% + 164873623 + 1872699222 + 308988002 + 33678528) 22
-(51840a% + 81043233 + 4715064a2 + 12191628a + 11563216} z

+ 10368a% + 14883223 4+ 71258422 + 1591998a + 1325303]
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3.2.3.2. LOGARITHMIC AND OTHER ALGEBRAIC CASES

Our next lemmas and theorems are concerned wuith logarithmic and

algebraic functions.

Lemma 25. The following relation is true for any complex 2z

oFil 1, 13 21 21 = - 271 Jogll-2) (121)

Lemma 26, The following relation

oF1 [ nel, némels nemele2; z1 = {122}
(=1)m(nems141) 8 gntm al
---------------------- (1-z)™! o F 01, 13 23 210
Ial(nem) Hmel) ! dz"* dz!
holds for any I, mn=98,1, 2,...

Proof Reflation (122) ie implied from relations {(28) and (32) of

Chapter 2.

Theorem 2. For any integer value of the parameters a, b and
positive integer values of the paramster c the hypergeometric function oFy[ a,

b; c; z] reduces to Elementary and/or Binomial functione.

Proof This is a consequence of lemma 25 above and femmas 1 through S

of our genaral reduction part.

Lemwa 27. The follouwing relation holds
Fl 172, 13 23 42{1-2)})]1 = {1-2)-1 (123)
for jzl €172, |z(l1-z2)] £ 1/4
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Lemma 28. The following relaticn holds

oF [ 17241, 1l4ms 24n; 2] = (124)

(2, (24m} y_p

(-1} _n{172) 5 (1/24m) W (Vg _p(1/24n) | _y,

n-m
I-n gn-m
Z/2-n _____ (=172 (q.plf2-m _____ [{1-z)"-1/2
dz'-" dz"-m
am
- F 1172, 13 23 211
dz"

Proof Relation (124) is implied from relations (26), (31) and (27) of

Chapter 2.

Our next theorem summarizes our reductions so far accomplished for
hypergeometric functiorns with numeric parameters and leading to Elementary and

algebraic functions.

Theorem 3. The hypergeomstric function
oF1 L a, b ¢; 2] (125)
is reducible to some Elementary and/or algebraic functions for any
a, be x|[x=n or x=n/2, nell

ceixjx=am or x=n/2 neZ, meZt

Proof The proof follows from lemma 26 above, theorems 1 and 2 as
uell as lemmas 1 through 5 of the general reduction part and the use of Gauss-~

Euler transformations {16@) and (1B1}.
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3.2.3.3. LEGENDRE FUNCTION REDUCTIONS

We next examine cases where a hypergeometric function is reducible to

Legendre functions.

Lemma 23. A hypergecmetric function
Fila, by c; 2] (126}
is reducible to a Legendre function if tuwo of the numbers 1-c, :{a-b}, z{c-a-b}

are equal to each other or one of them equals 21/2.

Proof This is a consequence of lemma 17 and relations (6i) and (62)

of Chapter 3.

Our next step again is to generalize Lemma 29 by using contiguity

and/or differentiation.

Lemma 38. Given the hypergeometric function (126) such that
ath = l+m, n e Z* (127)

then the following relation holds

2F1[ a, by c; zl (128)
w (-1}7 (1-z)-M

m {c-b){c-b+l)... (c-b+im-2)} (c-b+(m-1})}
[{ ) e o Fi1l a, b-m; c3 2]

6 {(b-a-im-1})({p-a-{m-2}}...{b-a-1) (b-a)

m (c-al {c-b) {c-b+i)... {c-b+(m-3)} {c-b+(m-2})
= { }ormmmm e -—- --oFi [ a-1, b-{m-1}; c; 2]
1 (b-a-(m-1)} (b-a-(m-3})... (b-a) (b-a+l)
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m {(c-al} (e-a+l) {c-b) (c-b+l)... (c-b+{m-3))
O P — - oF1 0 a-2, b-(m-2); ¢; 2]

2 (b-a-(m-2)) (b-a-{m-3)}... (b~a+l} (b-2+2}

m {(c-a}(c-a+l)...(c-a+(m-2}}(c-a+(m-1}}
VRN (5 ) LU ) -, - oF Ll a-m, by c; 21 1

m {(b-a) (b-a+l)...{b-a+{m-2)} (b-a+(n-1}}

Proof Relation (128) can be proved inductively on m, by using

relation {12) of Chapter 2.

Relation (128) has meaning whenever guantitiss a and b are not
integer numbers or rationals of the same demominator. Actually, relation (128}
is of benefit whenever guantities a2 and b are complex nuwmbers {or generally
whenever a and b contain symbolic quantities). Relation (128} obviously
reduces a hypergecmetric function to 2 sum of hypergeometrics such that lemma 28

holds for all of tham.

Lemma 31. Given the hypergsometric function (126) such that
ath = l+m, m e Z7-{-1} {129)

then the folloring retation holds

Fil a, by ¢ 2] {139)
n ala+l}... (a+(n-2)) (a+(n-1})

= (} {bra-p)} —---mmm e ~=-= oF1 1 a+n, b; c3 2]
) {b-a-n) {b-a-(n-1)),.. (b-a-1) {b-a}
n ala+l)...{a+(n-2)1b

-{ } {b-a-n+2) - e oF) [a+n-1,b+13 c; zZ}

1 {b-a-{n-i}) (b-a-(n-2})... (b-3) (b-a+1)



e

n afa+l)... (a+{n-4))b(b+l)
+{ 1 {b=-a-nN#l) e e e oFy [a+n-2,b425C3 2)
2 {b-a-{n-2)} (b-a-(n-3)}... (b-a+l) {b-a+2)
n btb+l)... (b+(n-1})
+ (1)1 () (b-a+n) - -- oFgla,ben; c3 2]
n {b-a} (b-2+1)... (b-a+in-1}) (b-a+n}

uhere n t= -m,

Proof Relation (138) can be proved by induction on n using the

. contiguous function relation (7} of Chapter 2.

Relation (138} reduces the hypergeometric function (126) that
satisfies a condition of type (129}, inte a sum of hupergeometrics that meets the

conditions of jemma 25.

We should notice that in order that a and b satisfy relation
(138), both should be either integers, rational numbers of the same denominator,
coplex, or both contain symbols. 1f both are integers then at least one must be
negative which implies that lemma 26 applies reducing the hypergeometric
function to a polynomial. It is easy to see that in any of the rest of the cases

relation (138} is applied without any restrictions.

Lemma 32. Given the hypsrgeometric function (126) such that
awb = Ze+m-1, m e Z* (131}
then ralation {128) reduces (125) into a sum of hypergeometric functions such

that the conditions of lemma 28 are satisfied.
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Lemma 33. Given the hypergeometric function {126} such that
a4b = 2c4m=l, me Z” {(132)
then relation (138} reduces (126) into a sum of hypergeometric functions such

that lemma's 28 conditions are satisfied.

Lemma 34, Given the hypergeometric function (126) such that
a-b = £(1-c)+m, m e Z* {133)

then the follouwing relation holds

oFil a, b; c; zl {134}
m b{b+1) {(b+2)... {b+:{m-1})

« { } (c-b-a-m)--- ———————e - (z-1)" Fi b a, bm; c; 2}
g (c-b-a-m) {(c-b-a-m+l}... [c-b-a)
m blb+l)... (b+(n-2}) (c-3)

P T Ty o, (z-1)M-1
i {e-b-a-{m-1)} {c-b-a-(m-2})... (c~-b-a+l}

oFq la-1, b+lm-1): c; 2]

m {c-a) (c-a+l)... (c-a+(m-1)}
+ () (c-b-a+m) wm—mmmm e Fil a-m, by c; 2zl

m {c-b-a) (c-b-a+l)... {c-b-a+m}

Proof Relation (134) can be proved by induction on m, given the

relation (11) of Chapter 2.

Rejation (134) hoids as long as guantities a, b and ¢ are not intsger
. numbers: cleariy it reduces the appropriate hypergeometric function into others

shich fall nithin the capabilities of lemma 29,

Lemma 35. Given the hypergeometric function {126) such that

a-b = z{l-cl4m, me Z” (135}
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then the formuia which is produced from formula (134) by an application of a

cyclic permutation to the quantitiee a and b, holds.

Lemma 36, Given the hypergecmetric function (126) such that
a-h = 1/2+m, m e Z* (136)
then retation (134) holds and reduces {i26) to a sum of hypergeometrics elligible

for lemma 29.

Lemma 37. Given the hypergeomstric function (126} such that
a-b = 1/2+m, meZ” (137}
then relation (134} holds by first applying 2 cyclic permutation of the

quantities a and .

Lemma 38, Given the hypergeometric function {126} such that
a+h = 1/2+cem, m e Z* (138}
then relation (128) halds and reduces {126) into a sum of elligible for lemma 29

hypergeometrics.

Lemma 39, Given the hypergeometric function (126} such that
a+h = 1/2+cem, me Z” {139)
then relation (130) applies and reduces (126) to a sum of hypergeometric

functions such that relation a+b = 1/2+c is satisfied.

In generalizing the conditions of femma 29 to accomplish reduction of
Legendre functions, we have been successful so far, by utilizing as our main tool

"contiguity". However, this is not possible for the rest of the cases we are
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going to deal uith, Therefore, ue mobil!ize our iast resort: "differentiation®.
Unfortunately, despite our many experiments wuith "differentiation” in these
remaining cases, we have been persuaded that general formulas cannot be provided.

Houaver, computational methods are possible and are described next.

Lemmz 48. There is an aigorithm such that the hypergeometric function

{126) uith
c=1/24m, me 2t {148}

reduces to a sum of lLegendre functions.

Proof This ic immediate from relation (26) of Chapter 2, lemma 29 and

the following relation:

~~~~~~~~ = vz P, . (z} - {vep) P ) (141}

V. i v-1,u(2

Lemm2a 41, There is an algorithm such that the hypergecmetric function

{126) uith
¢c=l/24m, mel” (i42)

reduces to a sum of Legendre functions.

Proof This is a result of lemma 29, relation (38} of Chapter 2 and

ralation (141},

Lemma 42. There is an algorithm such that the hypergeometric function
{(126) uith
2b = c+m, mel {143)
(and symmetrically 2a = c+m)

reduces to a sum of Legendre functions.

Proof Similar remarks to the ones presented in lemmas 40 and 41 apply

here too.
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We conclude our discussion of reduction to Legendre functions with the

follonwing theorem which is a generalization of our iemma 23,

Theorem &. A hypergeometric function (126) is reducible to:

a) A lLegendra function if twc of the numbers 1-c, x(a-b) and zl(c-a-

%} are equal to each other or one of them equals 1/2,

b} A sum of Legendre functions, if one of the following conditions

hold:

1, a¢b = i4m, meZ* and a, b e -0Q
2. atbh = 1l4m, me Z~-{-1} and a, belC -2
3. atb =2cm-1, meZ* and a, bel -0Q

4. a+b = 2c#ém-1, meZ2 -{-1t and a, b el -2

5. a<b = £(l-cl4m, me Z-B} and a, b, celC -2
6. a-tv = 1/24m, me Z-{6} and 2, b, c el -2

7. a+b = 1/2+c4m, me Z* and a, beC -0

8. a+b = 1/24c4m, me Z7-{-1) and a, bel -2

9. ¢c=1/2m, meZ and cel
18. 2b = c+m, suymmetrical ly 2a = c+m, melZ
and a, b, c e€eC
Proof This is a conssquence of lemmas 23 through 42 of the

present section.
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3.2.3.4. THE_ORTHOSONAL POLYNOMIALS OF JACOBI GEGENBAUER LEGENDRE AND
TCHEBICHEF

The Orthogonal Polynomials of Jacobi, Gegenbauer, legendre and

Tchebichef belong to the set of hypergeometric functions. Every hypergeometric
function

Fi1l a, by ¢ 2] (144)

where a or b is a negative integer reduces to some of the above mentioned

polynomiais. Under certain conditions, it is also possible to reduce (144) into

some of the above Orthogonal Polynomials where a or b is some other

arbitrary quantity. To accomplish the latest case, ue use linear, cubic as well

as other of higher degree transformations.

Lemma2 43. The follouing relations hold:

Th(x) = 2F1[ -n, ng 1723 1/72-%x/2} {145)
Up(x} = {n+l) Fyl -n, nely 3/2; 1/2-x/2] {146)
Prpix) = 2F1[ -n, n+¥ly 1; 1/2-x/21 (147)
(2v),
Cn'v{xl » m———— oFil -n, ne2vy val/2; 1/2-x/2] {148)
n!
n+a
Pn.c.ﬂ(”l = )} oFjl -n, n+a+f+l; a+l; 1/2-%x/2] (149)
n

vwhere n €N, a, f# €C and where T,{x) and U, {x) are Tchebichef polynomials,
Pn(x} a Legendre polynomial, Cn'v(xi a Gegenbaver polynomial and Pn'a'ﬂ{xl a

Jacobi polynomial,
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Of course, there exist equivalent hypergeometric function relations in
addition to those listed above (145) through (149}, Houever, as lemma &3
implicitly communicatss, we have established that a necessary feature of the
"standard" form of our Orthogonal Polynomials is that they should have a negative
integer number as a member of their "L list". We later on provide rules so that
equivalent hypergeometric functions are reduced to the standard ones: {145)

through (143).

Lemma 44, The follouing relations holds

Tolx) = n/2 Cp, gix) (158)
n!
Tn(xl ------ Pn.-llé,llzt“’ (151)
/2,
Up(x) = Cy plx) (152)
(n+1}!
U () = comeoeaee Pn.llZ,l/Z{"} {153}
201/2) 4y
Pn{xl - Cn,llzbd (154)
Palx} = P g gix) (155)
2v,
Cn'v{!d B mem— s Pn.v-llZ,v-l/Z(") (156)
(v+1/2),,

Proof Relations (15@) through (156) are a consequence of relations

{145) through {149).

Hence, legendre and Tchebichef polynomials are particular cases of
Gegenbauer polynomials and in their turn Gegenbauer polynomials are particular
cases of the polynomials of Jacobi. Furthermore, Jacobi polyriomials cover the

whole spectrum of polynomials that belong to the hypergeometric function set.
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Almost in every case so far the !inear transformations - Gauss Euleur
transformations - have been used to "standardize" and transform a hypergecmetric
function to a canonical form which is possibly further reducible to some
Elementary or Special Function. Orthogonal Polynomials are not an exception.
Linear transformations are utilized and in addition to them quadratic, cubic as
wel! as transformations of fourth and sixth degree are also put into action.
Hence, wuwe will next concetrate on the utilization of the available

transformations aof a hypergecmetric function.

The following lemma, similar to the lemma 17 of the Limit-Reduction
subsection, provides the criterion for accepting a hypergeometric function as

elligibie for third, fourth or sixth degree transformations.

Lemma 45. A cubic, quadratic or sixth degree transformation of the

hypergeometric function

Fila, by c; 2] (157)
exiats if and only if either
i-c = 2(a-b) = t(c-a-b} (158}
or if tuo of the numbers
2{1-c), z(a-b}, x{c-a-b) (159}

are equal to 1/3 (cubic), 174 {guartic) or 1/6 (sixth degree) correspondingiy.

For an extensive list of higher degree transformations look the

Appendix 2 and reference [15}.

Lemma 46. The hypergeomatric function (144) reduces to an Orthogonal

Polynomial of lemma 44, if a or b or c¢c-a or c-b are negative integers.
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Proof This is a consequence of the following linear transformations,

aleo called Gauss-Euleur transformations.

oFil a, by c; 21 = (1-2)°°3P F [ c-a, c-b; c: 2] (169)
z
oFila, by cs 2] e (1-2173 5Fjl a, c-b; c3 ---} {161}
z-1
Lemma 47, For any a = -n/3, n € N, the follouing hypergeometric

functions reduce to some Orthogonal Polynomials of our lemma 44,

oF1l a, a+1/3; 1/2; 2] oF 1 a, 1/6-a; 1/2; 2]

oF1 1 1/2-2, 1/6-a; 1/2; 2} oF1 1 1/2-a, 1/3+a; 1/2; 2z}
(162)

oF 1 2, a+l/2; 2a+5/6; 2] oF [ a, a+l/3; 2a+5/6; 2]

2F1[ a-5/6, a+l/3; 2a+5/8; zl 2F1[ a-5/6, a+l/2; 2a+5/6; z)

Proof Thia is & -consequence of the following two cubic

transformations:

oF1 [ 3a, 3a+1/2; 4a+2/3; 2 (i63)
3z -2722(1-z)
= {1 - -)732 F [ a, a+1/3; 2a45/6; —--mmmmmm )
4 (3z-4)3
oFyl 3a, 1/3-a; 1/2; z (164)
(9-82)22
= (-2)72 F [ a, 1/6-3; 1/2; ---mmm- ]
27(1-2)

as well as the Gauss-Euler relations (1668} and {i61).

Lemma 48. For any a = -n/3, n € N, the folloning hypergeometric

functions reduce to Orthogonal Polynomials menticned in Lemma 44.
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JFil a, a+l/2s 2/3; 2 Fil a, 1/6-a; 2/3; z]
(165)
oFy 1 2/3-a, a+l/2; 2/3; 2) Fyl 2/3-a, 1/6-a; 2/3s zI

Proof This is a consequence of the folfowing qubic transformation

oFyl a, 1/6-a; 2/3; x] (166)
T(1/2-a)T{a+1/3)
— [(1-;)3 oF [ 3a, 1/3-a; 1/23 t;]
3axi/2r a3

+ (1-t2)2 SFy [ 3a, 1/3-a; 1/2; t5)
+ {1-t3)3 oFf1 [ 32, 1/3-3; 1/2; t3l}

where tj, tp and t3 are roots of the following cubic equation

(3-41)3 - 27(1-t)x = B (167)

as wall as the Gauss Euleur transformations.

Lemma 43. For any a = -n/4, n € N, the follonwing huypergeometric

functions reduce to some DOrthogonal Palynomials of our lemma 44.

Fil a, 1/6-a; 2/3; 2 Fil 2/3-a, 1/6-a; 2/3; z]
F1l a, a+1/2; 2/3; 2 oFy L 2/3-a, a+l/2; 2/3; 2]

(168)
oFil a, asl/b; 2a+3/6; 2} F [ as3/4, a+l/4; 2a+3/4; 2]

oF1 L a, a+l/2; 2a+3/4; 2] oF1 [ a+3/4, a+l/2; 2a+3/4; 2]

Proof This is a consequence of the foliowing tuo quartic

transformations:

oFy I 4a, 1/2-2a; 2/3; zi (169)

{8-92)32
. {l.z)-2 oFl a, 1/6-a; 2/3; —-—oeme- ]
64(1-2)

F11 4a, 2a+l/4; 2a43/4; 2) {178)
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16z(1-2)2
= (1420747 JF [ a, asl/b; 2a43/4; ——-vmn-n-]

{1+2)4

as well a8 the Gauss-Euler transformations {iE8) and (161).

Lemma 58. For a = -n/4, n € N, the following hypergeometric

functions reduce to Orthogonal Polynomiais of lemma 44,

2F1[ a, a+l/é; 1/23 21 oF1 L a, 1/4-a; 1/2; z}
oF1 [ 1/2-a, 1/4-a; 1/2; 2] oF [ 1/2-a, a+l/4; 1/2; z]

{171)
oF1 0 a, a+i/2; 3/4; 2] F1l a, 1/4-a; 3/4; 2)

il 3/6-a, 1/4-a; 3/4; 2] Fyl 3/4-a, a+l/2; 3/4; Z)

Proof This is a consequence of the following quartic transformations

Fila, Ve-a; 1/2; x] (172)
1631 {a+1/2) T (a+374)

2w1/2p (2a43/4)
[t;3(1-¢1)23 oF [ 4a, 2a+1/4; 2a+3/6; t;)
+ t3(1-1)23 F, [ 6a, 2a+1/4; 2a+3/4; t5))
where t1, ty designate the two roots of the equation
(12-6t+1)2 + 16t(1-11%x = @ 173}

which are equal to 3-Zsgrt{2) for x = 0.

oFyl a, 1/4-a; 3/6; x) (174)
1697 (a+1/74) T (a43/4)
4T (1/4)T (2a43/6)
[t;301-41)8 SFy [ 4a, 1/2; 2a+3/4; )
+ 1301002 SFy [ 6a, 1/2; 2a+3/4; ty)
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+ t33(1—t313 2F1[ b4a, 1/2; 2a+3/4; t3]
+ t;,a(l-t(,la 2F1[ 4a, 1727 2a+3/4; tq]
Hhere tl' tz, t3 and t; are the four roots of the equation

(2t-1)% + 16t(1-t)x = B {175)

as well as the Gause-Euleur transformations.

Lemma S§1. For any a = -n/6, n € N, the following hypergeometric

functions reduce to the Orthogonal Polynomials of lemma 44.

F1l a, a+1/2; 2a+5/6;: 21 oF1 1 a+5/6, a+l/2; 2245/6; z)
{176)
oF11 a, a+l/3: 2a+5/6; zl oF [ a+5/8, a+1/3; 2a+5/6: z)

Proof This is a consequense of the following transformations of sixth

degrea:
oF [ Ba, 2/3-2a; 2a+5/6; z (177}
108z (1-2)
= (1-162+41622)32,F, [ a, a+1/3; 2245/B3 —~--mmm=m===- )
(1-16z+1622)3

as well as tha Gauss-Euler transformations.

It is worth mentioning that quadratic transformations, Ilike the
follouing one:

oF1 [ 2a, 2b; a+b+l/2; 21 = oF)i a, by a+b+l/2; 4z(1-2)) (178}

can be utilized for similar purposes, and in our case, successfully. However, it

turns out that linear transformations are sufficient to achieve the same goals.
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However,

He

will not investigate every case as we did in some previous instances before since

guch a task is trivial by nou.

Instead we will gather our accumulated results,

put them in their generalized form in the following lemma and leave the reader to

inveastigate the details.

Or thogonal

where Kk,

Lemma 52.

Polynomials mentioned in Lemma 44

2F1t
it
2Fi [

oF, [a-5/6+k, a+l/3+1: 2a345/6+m; z]

21t
2F1(
ZF1l
v
F1!
Fil
Fit
F1!
F1l
F1l
Fil
F1l

atk, a+l/3+1: 1/2+m; 2z}
1/2-a+k, 1/6-a+l; 1/2+m; 2zl

a+k, a+l/2+1; 2a+5/6+4m; 2z}

ark, a+l/2+1; 2/3+m; 2]

2/3-a+k, a+l/2+1; 2/3+m; 2]
a+k, ilS-a+I; 2/3+m; zl
ask, a+l/2+13 2/3+m; 2zl
a+k, a+l/4+1; 2a+3/4+m; 2]
a+k, a+l1/2+1; 2a+3/4+m; 2]
ask, a+l/é+1; 1/24m; 2]
1/2-a+k, 1/6-a+i; 1/2+m 2l

a+k, a+l/2+41; 3/64ms z]
3/4-a+k, 1/4-a+1; 3/64m; 21
avk, a+l/2+1; 2a+5/6+m; Z]

a+k, a+l/3+l; 2245/64m; 2]

21l
1!
1l
F1t
Fit

oF [ 2/3-a+k, 1/6-a+1; 2/3+m;

il
21!
Fil
ZF1l
2F1l
ZF1l
21!
7 A
r 3}
F1l

! and m are appropriate integer numbers.

a+k, 1/6-a+i; 1/2+m; 2zl

1/2-a+k, 1/3+a+l; 1/2+m; zl

The foliowing hypergeometric functions reduce to some

{179)

a+k, a+l/3+1; 2a+5/B6+m; z]
a-5/6+k, a+l/2+i; 2a+5/6+m;
a+k, 1/6-a+l; 2/3+m; zl

z]
2/3-ask, 1/6-a+l; 2/3+m; 2]
2/3-a+k, a+l/2+1; 2/3+m; 2]
a+3/4+k, a+l/4+1; 2a+3/6+m;
a+3/4+k, a+l/2+1; 2a+3/4+m;
a+k, 1/6-a+i; 1/2+4m; 2]
1/2-a+k, a+l/6+t; 1/2+ms 2z
a+k, 1/4-a+ls 3/64m; 2zl
3/4-a+k, a+l/2+1; 3/44m; 2]
a+5/B+k, a+l/2+1; 2a+5/6+m;

a+S5/6+k, a+l/3+1; 2a45/64m;

zl

z]

zl]

z)

z]
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Proof This is a consequence of lemmas {44) through (51}, the
differentiation formulas (26) through (33} of Chapter 2 and the following

differential relations

dl'l'l
2 - Py, a,8) ¥ (180)
dx™
= (!’H’G-Fﬂ-!-”m Pl"l-lll, {o+m, §+m) (x)
dm
—= Ca a0 = 2"y, Crip pen) 181
dx™

3.2.3.5. [NCOMPLETE BETA FUNCTION REDUCTIONS

Reductions of a hypergeometric function to an Incomplete Beta

function is the last to be studied in the hypergeometric function reductions.

Lemma 53. For the huypergeometric function
oFila, b c; 2] (182)

such that a-c = -l1+4m, m € Z%, the following relation holds

sFil a, by c; 2] {183)

1 m {b-c-(m-1)} (b-c-(m-2}) ... (b-c)
& e [(} —oemee e zm2F1[ a, b; c+m; 2zl

(1-2)" @ clcHl) {c+2) ... fc+im-1))
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m  (b-c-{m-2)) (b-c-(n-3}} ..., (b-c)
TR () S —— - 2™ F [ a-1, by cem-1; 2]

m b-¢c
+{ )} -2z 2F1[ a-{m-1), b3 c+l; zI
m-1 ¢
(]
+ () 2F1[ a-m, by cg 211
m

Lemma S4. For the hypergeometric function (182) such that

a-c=-l+m, me ™ 184)
the following relation holds
sF10 2, b; ¢; 2]  (185)
1
(c-a-n} {c-a-In-1}} ... {(ec-a-1)
n
(€) tc-n)lc-(n-11} ... (c-1) oFjl a, b; c; 2]
8
n
- () ale-in-1}) (c-{n-2)} ... {c-1) oF1[ a+l, by c~(n-1); 2]
1
n
+ () afa+l} (c-(n=2)) (c=(n-3}) ... {c-1) SF{[ a+2, b; c-(n-2); z]
2

L te e LN )

n
+ D () atasl) (242} ... faeln-1)) oFp [ aen, bs c; 2))
n

The following theorem summarizes the Incomplete Beta case reduction.
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Theorem 5. The hypergeometric function (182) reduces to Incomplete

Beta functions if either of the follouing conditions holds

a-c = ls+m meZ (186}
b-c = 1l+m melZ . {187)

3.2.4. OTHER REDUCTIONS

~ For higher values of p and g of the Generalized Hypergeometric
Function qu(z), besides the general! reduction methods that apply to them we also
utilize the relations that appear in table & of Chapter 3.1. [t turns out that
thase formulas are often utilized to solvs problems appearing in entries of the

tables of the Bateman Manuscript.
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Chapter 4

CONCLUSIONS AND FURTHER RESEARCH

Dur thesis constitutes the first systematic effort towards the
automatijon of the definite integrals for Special Functions, particulariy the
automation of ihe Bateman's Manuscript Project. Research and implementation are

still under way and we feel that a iot more can be accomplished.

Let us first present some statistice of our "early” implementation of
the Laplace transforme and see what this package can accomplish in comparison
With the Bateman's Manuscript. Notice, that this package incorporates a proper
subset of the methods presented here. The total number of formulas in Bateman is
approximately 5,588, The total number of formulas that involve Special Functions
in their entries in the "Laplace section® of the Bateman Hanuscript is
approximately 458, The total numbe: of formuias that involve Special Functions
ih their entries throughout the two volumes of the Bateman Manuscript is
approximately 688. Currently, we incorporate eight formulas in the table look-
up. MWe estimate that in order to exhaust the Laplace and K transforms we need
thirty to thirty five formulas. However, few are required to cover the largest
parts of these sections, MWith eight formulas in the table we can exhaust and
golve all entries in the Bateman Manuscript for Special Functions of linear or

sguare rocts of !inear argument. MWe estimate to cover at least 75% of the
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Special Functions of other arguments in the Bateman Manuscript Project (i.e.

t-1 t2‘ e-t’

L ]

(t2+32}1/2. sinh(t} etc.) as soon as a Hankel implementation has
beenn made. The rest of them will require implementations of other integral

transforms. The Special Functions of other arguments occupy approximatety 35%

of the total! number of Laplace transforme entries.

More, specifically, our current Laplace transforms implementation is

generalily capable of integrating expressions described in the two categories

belous

1. Special Functions of finear or guadratic argument multiplied uith:
a. Arbitrary powers of the argument

b. Trigonometric and exponential functions of |inear
argument,
2. Products of two Special Functions of linear or quadratic argument,
multiplied with the same kind of functions we mentioned in the first category.

The Special Functions of thie latter category can he functions of only one of the

following groups:

a. Any kind of Bessel, Modified Bessei, or Hanke!
functions.

. Orthogonal Polynomialsa.
c. Confiuent Hypergeometric Functions.
The package is relatively fast, as the actual examples in the appendix

1 show. The only main external package it utilizes is the pattern matching

routines of Schatchen [23].
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Let us next present points of research that might be followed to

increase the current capabilities of cur design.

1. Computational methods te facilitate the expression of products of
General ized Hypergeometric Functions in terms of one Generalized Hypergeometric
Function and vice versa. These computational methods can help both stages one

and three.

2. Computational methods for the reduction of Gauss hypergeometric

functions %o inverse 2utomorphic functions(3].

3. Generalizations of the qu(zl to incorporate the G-function and
the MacRobert's E-function. It wuill basicaliy require an additional
computation in the exiating reduction procedure: The reduction of the G and E

functions to qu(z) wherever possibie,

4, Computational methode for finding definite integrals of functions
other than Special Functions (eg. algebraic etc.) resulting in expressions

involving Special Functions.

S. Computational methode for the summation of the Generaiized
Hypergeometric Furctions. This is sometimes a necessary step for those casss in
which the "transform parameter" has a particular numerical value. OSometimes the
existing reduction methods are sufficient particularly the general reduction

methods. (see also the introduction of Chapter 3 for more comments).

We next give scme ideas where our scheme - particularly stage 3 -

can be utilized for other than definite intogration purposes.
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1. Differentiation of Special Functions. Here, we should incorporate
stage 1, @ couple of differentiation formulas at the Generalized Hupergeometric
level for stage 2, stage 3 and the well knoun differsntiation algoriiom from
Calculus, 1t should be noticed that differentiation does not increase the values
of p and g of the qu(z), unlike the case of integration, and as a consequence
stage 3 is greatly simplified. Likeuwise, stage 1 will be a proper subset of our
etage 1 of our definite integration scheme since transform properties etc. should

be ignored here.

2. Simplification of Special Functions. The deletion of stage 2 from
our scheme results in a package for reducing an expression involving Special

Functions to other Special Functions and/or eiementary functions.

3. Differential equations. Stage 3 can be hel!pful to Generalized
Hupergeometric series solutions of differential equations [24). Actually, we
feel that a similar strategy to that adopted for the definite integration problem
can posaibly be applied to the problem of solving Bessel, Legendre, Confluent
etc. differential equations. All these differential equations can be viewed as
particular cases of the differential equation (1} Chapter 2. The solution of
this last equation which invoives Generalized Hupergeometric Series then can be

processed by the reduction methods of our stage 3.
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APPENDIX 1.

This is a sample of some actual examples of the Laplace Transform
system in MACSYMA. "Definte" is the top function that calls the integral
transforms, it takes two arguments: the expression to be integrated
and the variable, and assumes limits of integration from zero to infinity.

(C18) ASSUME(P > 9):
{D1@) P> 8]

{C11}) SHOWTIME: TRUES
time= 1 msec,

(C12) /% LAPLACE TRANSFORMS */
/x SOME ELEMENTARY FUNCTIONS. =/

T {L/2)Y %XE™ (-AxT/4) x%E~(-PxT};
time= 26 msec.

AT
-PT - —--
4
{D12) SART(T) %E
{C13} DEFINTE(%,T);
RPART FASL DSK MACSYM being loaded
loading done
A
Is - P - - positive, negative, or zero?
4
NEGATIVE;
GAMMA FASL DSK MAXOUT being loaded
loading done
time= 882 msec.
SART (%PI)
N1y  ememmaee-
A 3/2
2 P+ )
4
(Cla) TH(3/4)YHAEN(-T*2/2/B) n%4E~ (-P%T) ;
time= 25 msec.
2
T
- = =-PT7
3/4 2B

(Di4) T %E

(C15) DEFINTE{%,T);
time= 1298 msec.

3 7/8
{D15) 3 GAMMA{-) B

4
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& SORT(%PI) M {~ —=~-}
5/8, - 1/4 2

5/8 %I SQRT{2)  SORT(2) 3 /4
< 1 (A 4 e ) GAMMA(-) B SQRT{P)
2 2 8

2 2
3/8 B P BP
2 SQRT(%P1) M (= —=-) ——--
5/8, 1/6 2 4
e e e ) %€ /4
%1 SORT(2)  SORT(2) 3 7 14
(wme e 4 mmmmme -} GAMMA(-} B SQRT(P)
2 2 8

(C18) TA(-1/2)%%E~{-2#A™(L/2) xT~(1/2) ) %EN (-PxT) ¢
time= 25 msec.
- P 1 - 2 SORT(A) SGRT(T)

%E
{Di6) = e e s
SORT(T)
(Ci7) DEFINTE(%, T}
time= 1818 msec.
A
A —
- 2P

‘ 2 P SQRT(%PI} %E
(D17) SORT(2) %E (mmmm e aeee

SORT (2)
A
SART{P) 2P
SGRT(2) SORT(%PI} ERF (~v—--—- ) 4E
SGRT (A)
e ———————— e } /SQRT (P}
2
{C18) T~(1/2)x%E~(-Px7-A/T):
time= 17 msec.
-PT-AT
(D18) SART(T) %E
(C13) DEFINTE(%,T);
ls A positive, negative, or zero?
POSITIVE;
time= 281 msec.
‘ 3/4
%Pl ({1 {2 SORT (A} SART(P}) - I (2 SART(AY SORT{(P})} A
- 3/2 3/2
(019} —m e e
3 %Pl . 3/4
SIN(--=-- ) P
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(C28} SIN(AxT}*COSH {BxT"2) %x%E~ (-PxT);

HYPER FASL DSK MAXOUT being loaded
toading done
time= 21 msec.
-PT 2
(D29) %E SIN{A T) COSHIB T )

(C21}) DEFINTE(%,7):
time= 2984 msec,

2 P + %I A)
(P + %I A) - mee———————

021) - %E (mmmmme e m

&8 2 %] SORT(B)
SORT(%¥P1) %E ERF (- ————mmeemeee )
P+% A
i )/ (4 SQRT(2) SQRT(B))
SART (2)

(P + %1 A)

P + %1 A) 88 2 SORT(B)
----------- SORT (%P1) %E ERF (- ~mmmwenm-)
8 B P+l A

SORT (2}

# memmmmm oo }/(4 SORT(2) SQRT(B)}
SQRT (2}

2 P - %I A}
(P - %I A} - mmmm——————

8B 2 %I SQRT(B)
SORT (%P1} %E ERF (= ==cemmmm———e )
P-%IA
Bttt }/ (4 SORT(2} SART(B))
SQRT (2}
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2
P - % A
2 .
P -4 A 88 2 SORT (B}
----------- SORT (%P1) XE ERF (- w~mmmmmmv)
8B P - %l A
- %1 %E (~mmmmmmmmm oo o
SORT (2}
2
(P - %1 A)
8B
SQRT (%P1) %E
T — )74 SORT(2) SQRT(B})
SORT (2} -

(C22) /% SOME "CONFLUENTS". NOTICE THAT "MIK,M (2)" IS A WHITTAKER FU
NCTION. x/

AE~ (AxT) kT 2%ERF (T~ (1/2) ) %%E~ (-PxT};
time= 18 msec.

2 AT-PT
(D22) ERF(SORT(T)) T %E

{C23) DEFINTE(%,T);

Is A -P positive, negative, or zero?
NEGATIVE;

time= 417 msec.

1 2
(171 0 ST o
1 1 3/2
SQRT (----- +1) 3P =A (- + 1)
P-A P-»
1 7/2
P — 1/ P - A )
2 1 5/2
S (P -A) f(---m- + 1)
P-A

{C24) TA{1/2)xGAMMAINCOMPLETE (1/2, AxT) %%E~(-PxT])}
time= 12 msec.

1 -PT
{D24) GAMMAINCOMPLETE (-, A T) SORT(T) %XE
2
{C25) DEFINTE(%,T):
time= 1782 msec.
%P1 2
{1724 )
372 A 3/2 372 A 372
2 P+ A 1 - ———— ) {P + A) (1 - —=—-- )
P+ A P+ A

(C2B8)} T~{3/2)xGAMMAGREEK (3/4, AxT) x%E~{-PxT) ;
time= 12 msec.

3 3/2 -P1
(D26} GAMMAGREEK (-, A T) T %E

A
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(C27) DEFINTE (%,7);
time= 276 msec.
1
15 GAMMA (-}
4
(027) -
%1 SORT(2) SORT(2) 3 &5/2
16 {-mmmmmmeee b oammmne ) P
2 2
{C28) TxMI{1/2,3/6] (AxTISUE™ (-PxT):
time= 12 msec.
-PT
{D28) M (A T) TYE
172, 374
{CZ9) DEFINTE(%,T):
time= 418 msec.
1 2 A 5/4 A 3/4
15 GAMMA (-} P (1 - —=eun 1A {(———- - 1)
4 - T7/4, - 372 A A
P+ - P+ -
2 2
(DZ9) ~ e —————— e
A 13/4 A 3/2 A 374
16 SORT (%P1} (P + -) (1 - ~——- } {~——- + 1)
2 A A
P+ - P+ -
2 2
(C38) T~{3/2)xM[1/2,1) (T)R¥E~{-PxT) ¢
time= 12 msec.
32 -PT
{D38) M (my 71 %E
172, 1
(C31) DEFINTE(%,T)s
time= 1825 msec.
1 1
B (cme—cmmmm + e )
1 1 1 2
1 - - 3PP+ (1 - }
1 2 - 1
P+ - P+ -
2 2
(D31} = e
14
P+ -}
2

{C32) /% SOME BESSEL FUNCTS (BF'S). */
/% JIV) (Z2), 15T KIND OF BF’S., =/
/x YIV]1(Z), 2ND KIND OF BF'S.%x/

/x HIV,13(Z), 1ST KIND OF THE 3RD KIND OF BF'S (1ST HANKEL}. %/

/x HIV,21 (Z), 2ND KIND OF THE 3RD KIND OF BF'S {2ND HANKEL).x/
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TM(=1/2yxJ00) (2%A~{1/2) T~ {1/2) Y %%E" (-PxT) s
time= 17 msec.

-PT
J (2 SORT(A} SORT(YT)) %E
B
(032} = e
SART(T)
{C33) DEFINTE(%,T);
Is A zero or nonzero?
NONZERO;
time= 277 msec.
A
A 2P
SQRT{%P1) 1 (---) %E
B2P
{033} = e
SGRT (P}

(C34) TA(L/2)%J1] (ZRAN (172 %T~(1/2} ) %%E" (-PxT) 3
time= 15 msec.
-PT
(D34) J (2 SGRT(A) SORT{T}} SQRT(T} %E
1

(C35) DEFINTE(%,T);
time= 221 msec.

- A/P
SART (A) %E
=)
2
P
(C36) T 2xJ 1] (AxTIx¥E™(-PXxT};
time= 11 msec.
2 -P7
{D36) JADT %
1
{C37) DEFINTE(%,7);
time= 941 msec.
3 A
(0D37) = ememmmmmeaaem
2
A 5/2 4
(-- + 1} P
2
P
{C38) T~(3/2)xY 1] (AXT)%%E"~(-T):
time= 9 msec.
3/2 -7
{D33) Y(ATT %E

1
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(C39) DEFINTE(%,T)s
time= 325 msec.

1S %I SORT(2} P (= ==} (—mmemm - 1)
-2, 12 A 2

0 )
8 SORT(PI) (A + 1) (A +1) =-1)

(C4@) TA3xY (3741 (T~(1/2) 1 %XE~ (-PxT};
time= 13 msec,
3 -PT
(048) Y {(SQRT(T))} T 2E
3/4

(C41) DEFINTE(%,T};
time= 1785 msec.
1
3 1 8P
5643 GAMMA(-} M (---) %E
8 7/2, 3/84 P
[(a]79 1) S

512 GAMMA(-) P
4

5 1 8 P
1365 SQRT(2} GAMMA{-) M {-—-} %E
8 7/2, -3/834FP

256 GAMMA(-) P
4

(C42) T4/ xY (3741 (T~{1/2) ) %XE"(-PxT) 3
time= 13 msec.
4/3 -PT
{D&2i Y (SQRTI(TH) T %E
3/4

(C43) DEFINTE(%,T):
time= 1795 msec.
1
17 1 3P
6597 GAMMA(--) M (---) %E
26 11/6, 3/8 4 P
{(D43) = e
3 11/6
216 GAMMA(-) P
4



(Ca44)
time=

(D44)

{C45)
time=

(D4S)

(C4B)
timen

(D46}
(C47)
time=

(D47)
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23
23 SQRT(2) GAMMA(--) M

(---) %E

24 11/6, - 3/8 4 P

1 11/6
12 GAMMA(-) P
4

TH3/2Y %Y 11/72] (AxT)HEE™ (-PxT) ¢
13 msec.
/2 -PT
Y ATT %E
172

DEFINTE (%, T):
1274 msec.

SORT(2) {-—wwwew = mmmmmmrmme e )
A A 2 2

2 2

SORT (%P1} SORT(A) P

T*(3/2)xH[1/2, 11 {T)%%E~ (-PxT) ;
12 msec.
32 -PT
H (nr %E
i/2, 1

DEFINTE(%,T)
731 msec.

SOQRT {2} SGRT{%PI} (-- + 1) P
2
P

SORT (%P1} P
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(Ca8) T~(1/2)xH13/4,2) (TIRAE~(-PxT);
time= 12 msec.
-PT
(D48) H {T} SORT{T) %E
3/4, 2

(C43) DEFINTE(%,T);
time= 2937 msec.
1 1 i 3/8 3/4
S %I GAMMA(-) P SR — } (= - 1) p
& - 372, - 3/4 1 4
SQRT{(-- + 1) P

%1 SORT(Z)  SORT(23 23
18 SQRT(2) (m=mmmmmmmv b mmmmmm ) GAMMA (-)
2 2 4

1 1 i 3/8 9/4
S GAMMA(-} P b (- - 1) P
4 -3/2, - 3/4 1 4
SQRT(-- + 1) P

21 SORT(2)  SQRT(2) 23
18 SART(2) {-—————mmm PR ) GAMMA {-)
2 2 &

3 i 3/4
4 %1 GAMMA(-) P (mmm—mmmme ) P
& - 372, 34 1
SORT == + 1)

%1 SORT(2)  SGRT{(2} 3 21 1 3/8
G PO ) GAMMA (-} (-- - 1}
2 2 6 4
P

{C58) TxHI[2/3,11(T~(1/2) 1 x%E~(-PxT)
time= 12 msec,
-P7T
{DS8) H (SART(T)) T %E
2/3, 1

(CS51) DEFINTE(X,T);
times 2388 msec.
1
1 i 8P
4 %1 GAMMA(-) M {---) %E
3 3/2, 1/3 4P
(D51) = == e
2 372
3 SORT(3) GAMMAL-) P
3
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1

1 1 8P
4 GAMMA{-} 1M {---) %E
3 3/2, 1/3 4P

2 3/2
3 GAMMA(-) P
3

2 1 8P
8 %1 GAMMA(-} M (---) %E
3 3/2, -1/34P

1 372
3 SORT(3} GAMMAL-) P
3
{C52) /% 1(V1(Z}, KI[V1(Z}, MODIFIED BF’S. %/

TA=1/72V %] [1] (2%A~(1/2) %7~ (1/72) }%%E~(-PxT);
time= 17 msec.

-PT
[ (2 SORT(A) SQART(T)) %E
1
({003 T et
SART(M)
(C53) DEFINTE{%,T);
Is A zero or nonzero?
NONZERO;
time= 384 msec.
A
A Z2P
SART{%PI) i {---) %E
1/2 2P
(D53) = e meem
SART(P)
(CS4) TA(1/72 %I [1) (TYA¥E~(-PxT};
time= 11 msec.
-PT
{054} 1 (T) SQRT(T) %E
i
(C55) DEFINTE(%,T):
time= 297 msec.
1 1 5/2
3 SORT{%PI} P ) SGRT(-- - 1} P
- 3/2, -1 1 4
SORT (L ~ --) P
2
P
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(CSB) T 2xK[3/4] (T~{1/2) ) %ZE~(-PxT);
time= 13 msec.

2 -P71
(056) K {SURT{T)) T %E
3/4
{C57) DEFINTE(%,T);
time= 2840 msec.
1 %1 %P1
5 1 sSP 8
65 %Pl SORT{2) GAMMA(-) M (- ---)} %
8 5&5/2, -3/8 4P
(D57) — e e e e e
1 572
64 GAMMAL-) P
4
1 7 %41 %P1
3 1 8P 8
209 %Pl SORT(2) GAMMA{-) M {- --=) %E
& 5/2, 3/8 4P
3 /2
128 GAMMA(-) P
4
(CS8) T~ (5/2)xK{1/2) (T)a%E~(-PxT)
time= 12 msec,
. ' 5/2 -PT
(058} K T 71 %E
1/2
(CS9) DEFINTE(%,T):
time= 1883 msec.
(059)
[ 1
3 (%I - 1} (%1 + 1) SORT(2) SORT(ZPI} {——-m-—mmmme— 4 e )
1 3 2 1 2
30 ---)P {1 - ==}
Z2 2
P P
4
2P
4 1
(%1 - 1) (%1 + 1) SORT(2} SART(#F]) {(————eee 4 mmmme— e )
i 3 2 1 2
1 ---} P (i - -}
2 2
P P
3
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(CeB} T3xJIB] (T (1/2)) “2%%E~ (-PxT) ;s
time= 13 msec.

2 3 -PT
(D68 J (SARTIT) T <E

%)

{CE1) DEFINTE(%,T}:
time= 966 msec.

1 2P 1 2P
IMN () % 5N (-) %
1, 1P 372, 32 F
(0B1) B (oo = e
16 SOAT (P) 96 P

1 2P 1
3 M (-} % S
1/2, 1/2 P 1 2P &
U + 1 (---) % ) /P
2 82P

(CB2) JIL1 (T} 2%%E~(-PxT+R};
time= 12 msec.

2 R-PT
(0e2) 4 (T} %E

1

(C63) DEFINTE(Z,T);
time= 269 msec.

%P1 SORT(2) O R ) %E
1/2, 8 4
(= 1

16 (1 - --} P
2
P

{(CB4) T~(1/2)%d{1/23(T~{1/20 )~ 2%%E~(-PxT)
time= 15 msec,

2 -PT
(D64) J (SQRT (7)) SORTI(T) %E

1/2

{C6S) DEFINTE(%,T):
time= 299 msec.
- 1/P
%1 ER (%] SORT(P}) %E
fb65) = e e e
3/2
SORT (XP1) P

(CB6) T~(5/72) %Y [1/2] (TH(1/2)) " 2%¥4E~ (-PxT) ;
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timea 15 msec,
2 572 -P7F
(066} Y (SORT{TN) T %E
1/2

(Ce7) DEFINTE(%,Ti;
time= 1599 msec.
1 1
1 1/4 2P 1 2P
2 n (-} P % 4 H {~} %E
3/4, 3/4 P 5/4, 5/4 P
(D67} - 12 (- ——cmmmme s et
3 1/4

- 1/P
%1 SORT(%P1) ERF{%] SURT(P}) SORT(P} %E 4
b e )/ (%P1 P )

(C63Y 118) (2xA~{1/2)xT~{1/2))"2x%E~(-PxT};
time= 15 msec,

2 -PT
(D68} ] (2 SORT{A} SORT{T)) %E

]

{CB3) DEFINTE(%,T);
Is A zero or nonzero?

NONZERO:
time= 380 msec.
2 A
2A P
I (---) %E
B P
{]~1 ) 2 U ——

(C70) T~{3/4)xJI1/21 (T)%J[1/4] (T)%%E~(-PxT}
time= 15 msec.
3/ -PT
(D78) J (mJ mrm %E
174 1/2

(C71) DEFINTE(%,T);
time= 1266 msec.

3P (wmmmmmmmmeee ) {-~-1) P
- 5/4, - 172 4 4
SQRT(-- + 1) P

(074 8 S
3/46 %1 SORT(2} SORT{2) 3 1

&2  {ememmmmee b oo ) SORT(YPI) GAMMA(-)

2 2 4

(C72) JI1/2) (T~(1/2}) %Y (1/2) (T~ (1/2}) %%E~ (-PxT)
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time= 15 msec.

-P7
(D72) J (SORTIT}) ¥  (SQGRT(T)) %E
172 1/2
{C73)} DEFINTE{%,T}:
time= 365 msec.
1
1 2P
%1 1 (---) %E
1/72 2P
(D73 Y
P
{C74) Txl (0] (AxT/2) %] {17 (AxT/2) % %E" (~PxT} s
time= 17 msec.
AT AT -PT
(D74) [ (——-} I (-==) T %E
8 2 1 2
(C7S)} DEFINTE(%,Ti;
time= 1283 msec.
2 2
2 A A
P {1 - ——---) A SGRT(-- - 1)
- 1/2, -1 2 2
P P
{075) = e
2 2
A A 3
2 (1 - --) SURT{~- + 1) P
2 2
P p
(C76) TIL/20(T~(L/2) ) %K [L/20 AT~ (L/2) ) aXE{-PxT)
time= 15 msec.
-PT
(D78) I {SORTI(T)) X  ({SQRT{M)} %E
172 172
{C77) DEFINTE(%,T);
times= 2389 msec.
1 1
1 2P 1 2P
%41 %PI 41 + 1) | {(---) %E %PL (%] + 13 1 {---] %E
1/2 2P 1/2 2P
(077) ——— e = e
4 P 4 P
1 1
i 2P 1 2P
%] %P1 (%I - 1) 1 {(---) %E %P1 (31 - 1) 1 (---) %E
1/2 2P 1/22P
$ e e b e
4 P 4 P

(C78) /x RELATED TO BF'S FUNCTIONS. x/
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/x STRUVE FUNCTIONS. %/

T(-1/2)*LSTRUVE [-1/2] (T™{1/2) ) x%E~ (-PxT};

time=

(078}

{C79)
time=

(D739}
(C88)
time=

(08

(C81)
time=

(031)

+ 12

(C82)
time=

(082}

{C8&3)
time=

16 msec.
-PT
LSTRUVE {SART(T)) %E
-1/2

SART(T)

DEFINTE (%, T}
1333 msec.

1 3 1 8P
(%1 - 1) (%] + 1) SQRT(2) GAMMA(-) GAMMA(-} 1  (---) %E
4 4 1/4 8P

4 SORT{%PI) SORT{P)

TA(3/2)kHSTRUVE (1) (T~ (1/2) ) %%E~(-PxT};
13 msec.
32 -P7%
HSTRUVE (SORT(Yi} T %E
1

DEFINTE(%, T}
743 msec.
1
H 3/4 8P
16 SQRT(2Y N {---) P %E
1/4, 5/4 4 P
B (- —mmm e
15

1 174 8P
SART(2) M {---) P %E
3/4, 7/46 4 P

3 1 3/2 &P 7/2
%] GAMMAGREEK (-, ~ ---) P yi3 J/(3%PI P )
2 4 P

TA(-1/2)xLSTRUVE [-1/2] (AxT) *%E~{-PxT);
16 msec.
-P7T
LSTRUVE {AT) %E
-1/2

o ——— i —— o b 420 -

SART(T)

DEFINTE(%, T}
1279 msec.
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%1 P
%1 4% - 1} (%I + 1) SGRT(2) ERF{----)
A
(D83} S
4 SORT(A)
(C84) TxHSTRUYEIL1] (T)x%E~{-PxT):
timea 10 msec.
-PT
{D84) HSTRUYE (T) T %E
1
{C85) DEFINTE(%,7):
times 232 msec.
16 %1
(D85} QR o
: /2 1 3/72 3
3 %Pl {(~- +1) P
2
p
(C86) /x LOMMEL FUNCTIONS. %/
TH(9/8)%S501/72,1/74) (TH{1/2) YoXE™ {-PxT) ;
time= 14 msec.
/8 -PT
(086) S (SARTETI) T %E
172, 1/4
{C87) DEFINTE({%,T};:
time= 1326 msec.
1 5 %l %P1
5 1 5/8 4 P 8
S GAMMAGREEK (-, = --=)} P %E
7 8 4 P
(D87) 2 GAMMA(-) (-
8 374
22
1
5/8 1 5/16 8P
B4 2 | {---) P %E
11/16, 13/16 4 P 23/8
. e ————— i/{4 P ]
195
(C28) T~(1/4)x511/2,-1/21{T~(1/2) ) %%E~ [-PxT);
time= 16 msec.
174 -PT

(D88} S (SQRT(TI} T %E
172, - 172
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(C89) DEFINTE(%,T);
time= 229 msec.
1
4 P
%1 SORT(%P]) ERF(- 2 %I SORT(P}) %E
(D89) . e

(C98) T~(1/8)*SLOMMEL (1/2,1/4] (T~{1/2) }x¥E~{-P&T)
time= 14 msec:
178 -PT
(030) SLOMMEL {(SQRTIT)} T %E
1/2, 1/4

(CS1) DEFINTE(%,T);
time= 5376 msec.

5 7 4 P 8
GAMMA () GAMMA{-) %E
8 8
(D91) - ———— e
374 S/4
22 P

S 7 4 P 3
GAMMA (-) GAMMA({-) %E
3 8

3/4 S/4

S 7 8 4 P
%I GAMMA{-} GAMMA(-) %E
8 8

3/4 S/4
22 P

5 7 4 P 8
%1 GAMMA(-) GAMMA(-} %E
8 8

3/4 5/4
22 P
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1 5 %1 %Pl

1/4 5 1 7 4P 8
2 GAMMAGREEK (-, - ---) GAMMA(-} %E
3 4 P 8

(C92) T~{(1/4)xSLOMMEL [1/2,-1721 (T~ (1/2} ) %%E"~ (-Px*T};
time= 16 msec.

- 1/4 -PT
{D92) SLOMMEL {SQRT(TH) T %E
172, - 172
(C93) DEFINTE(%,Ti;
time= 5633 msec.
1
4 P
%1 SORT(%FPI} ERF(- 2 %I SQRT(P)) %E
(093] - e
3/2
2P
1
1 1 4 P
%1 GAMMAGREEK(- -, - ---} %E
2 4 P
3/2
4 P
time= 66889 msec.
{D94) BATCH DONE

(C35) CLOSEFILE (MUC,DEMO);
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APPENDIY 2.

The quadratic transformations (see also [3] and [15])):

(1) File, b« -b+ 1 ) }
w(l-2)"Fi%e -bilat /2 14 a-b—4 A1--277]

(20 F(2q 2b;c+baY¥;2)=Fla, b e+ b_-!—'/i; 4 2{1 - 2]

“{a + 15y ¢
{3) F(2q 2b;_a+b+%;%+‘éz} Fla+br %) 10D (ﬂ; b; ) = )

Na+ BTG+ %)
Vie+ b+ D(-4)

—_ A 1 .3 2; 2
z TSI Fla+¥, b+3;3/2; 29)

{(4) Ffc, b; 2b 2=(1-%2"FlYhe ¥+ Yoo, bt 1/(2- 21}
(5) [f_a, b; 26, 4z2{1+2)"F =01+ 2)2F( aé-% —b; by 2%)
(6) Fle a+¥%;b; 2227 =(1HZZ)—2°F'[2(1, 2a--b+Y; by 22 -20)

Goursel’s table of gquedratic transformations. The square roots are
defined in such o way t}a at their value becomes real and positive if z is
real and 0 < z < 1. All fomulas are valid in 2 nub}fbmhool of z=10,

2V 1 e+ 3+ 1)
F b
D reimTgan ek <
: =‘F[2a,2b;_a+b+%,’/(1:z”)}

1+ Fl2aq, 26;0‘-5-51-,4,;2(1—2 23] .

2T T {a+1~28) =
1 GF b —
(8) AT b)( + 2 Fa byl —2) .
= F[2¢, 1—2b,a+1ub54+35z“ (1+z) %) .

-~ ‘o
+ F[2e, 1= 2b; a4+ 1-L; -4 2% (14 274]

-0 +bh -

() .21 ) D e J) 2% Fla, b; 3/2; )
T(-T10-
= (2a--1, 2b—1;a-!rb-—%;%~'/£z";)

— F(2a -1, 25~ 1; (z‘p[)’_-%;‘/ﬁ,% 255)

(10) Fle b, a+b +¥%; 2} = F[2q 2&; et b+ ¥ - Y1~ )%
(1) Fle by e+ b+ Vs 2)

. . IO ¢ O L |
=Y ¥ N} F] 2, a-b+ Vs ar b
[ i (1 /:) } [ ‘ ¢ * (1 z)“ + 1

(D Fle b;at by ¥i;—2) ) )
=Lt 2% + 25172 F[ 2, a4 by 2a+ 20; 2(z + =9¥% —27]

(13) Fla, b; as+b =%; 2)
(1~Z);I[?r!—-]2b~l at b= Y — V(1 %]
(next page cont fa)
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(the quadratic transformations coat'd)

(4) Flo b e+b =% 2)={1 -4 [% +%(1-2)%) )2

_ A%
XFi2e-1, e-b+l;ar b /;,_(_1__7}_.._.
(1-2)%+1

(15) Flg b; e+ b~ Yo—2=(l+2)~ ”[(1_},.,)0_'2’4]!"23
XFl2e—-), atb-1;2e+ 2b~2; 2(z + 27 -2,]

(16) Fle, e Y;c; 2)
H(l—z)~°T[?o 2¢~2a--1; ;¥ -%{(1—2" "]

(17) F(a, e+ e z)
={1+ z"’g)"'f’u Fl2e, ¢ -Y%: 2¢ ——-1'; 241+ 2%)" .
(18) Flg, b la+ b+ 0/ 2; 2 =Flha Yb;let+ b+ D/ 4201 — )

(19) Fla b lo+b+ 1)/ 2}
- ={1-29 Fl% l-/zﬂ/z-yb (@t+d+ 1)/9 4z(1- 2]

{.20) F{e ylatdb+ 0/2;d--(1-257°
=Fl¥a % +%a; (a+br1)/2 4z(z-1 (22 -7 2]

(20 Fle b;(a+ b 1)/2; z} -{(1 hz)’" + z"]“z“
=Fle, YetVibyer b 4z”(z + 1) (1 % 1 2%]7

(29) Flg 1-a;c; 2) o . )
=1 Fe—~Ya (ere-1/2 ¢ 42(1_.2)]

{(23) ={(1- Z)c—-i(lh 2z) Fil e+l (¢4 1~ a}/if‘..; c; ax{1 - 23]

(21) Fle, 1—a;c¢; z)=(1 - 21— 22)°7°¢
X F{¥e-Yie, (ct1—a)/2 ¢; 42(z—0(1-22)77]

(25) F(a, 1H a; C; v—z) =z (1.-E- Z)Cﬂl [(l-i- 2.‘)/‘ + z/:] 2= 2a=2c
xFlete—1, c—=%; 2¢-1; 427 (14 A% [(L+ 2 5 2¥]17%}

(95) Fla, b; 2b; 2)
(Lo %o FlYa b-Yoes b+ % (z2/1) (z-- W]

N ;:'(1- 1 (L= A TFE PB4l ~Yoa Y+ Vieg ba Yo 224240
(23) a (1-%2) “FYe Yt+hha b+l 22277
(20) w= (1D (1 -UDTEFb -V, ba¥% Yooy b+ Y27 (2-2)77]

(next page cont'd)

OATAT N THE FALI AT mRAAm- wm mame—— e - o
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(30) Fie, b; 2b; 2) = (1~ 2) -¥a
)"rlﬂ, Qb--u b }-/‘;J (—./)(1_2) h{l-—(l—-}")/}?l

(31) Fla, by 2b; 2)=[1 +/(1Hz) ]“‘Zu

z
xF{a,r-:—b‘P‘/é;L + Y [ 1_‘;(_1WL] }
1 i—(l—-z)”

(32) Fla by cebtlyz)=(1—2)¢
X Fl¥a (e+ 1-20/% e=b+ ,—42(1- 273

@33) Flo bra=bt 132 =14 A (127"
» FiY% ‘l‘i/zﬂ, Vet 1-—6;(1_-—'[).5. 1;_4.2(1__2)-"-2]

ERY

(31) Fla, by e~b+1; ) ={1+2)"° o
X Fiiebetl;e-b=1; 4z(1+ 277 (%) -
. (33 F(a,.b; c—-b+1;z) == (1—-—2)1“25 (14 )%=

X Flla+1-20)/2, (c—2b + 2V/2; 2+ 1~ b; 42(L+ 377) ;

(36) }?{n, bia—b+ 1;2)=(1+ %)% _
% Fla, a—b+¥%; 2a—2b+ 1; 425 (1 ¢ 2%) 7]

The 1hs hypergecometric fanction of the qdadratlc tram‘formatlon (34).
shoald, be: F(1/2a, 1/2at1/2; a-btl; 47(1*7)" ). This is a typo error

in both -[3) and [15] refereaces

.
* .

The rational cubic trans formations. For an extensive list of cubic transformations

see [15].
(10) F(2e, 3a+3; 4t 2/3; 2)= (1~ 02/0) %
“ Fle et¥;e+5/6;-2723(1— 2 9z - 8)7F
(‘1-1) I"(Sf.", Ky ‘+ f/ﬁ, T -F 5/6’ 2)3(1_92 —2u
X Fle, e+¥%; 2¢+5/6;-272(1 - 22 (1--92)72)-
(42) F(8a, ¢+ 1/6; da+2/3; 2)=(1-2/H7*
% Fla, e+ 1/3; 2¢4 5/6; -212%(z - 4)7° ]
(43) F(3q, 1/3—a; 2e+ 5/6; 2z} = (1~ 4z) 3
% Fle, e+ 1/3; 2e:5/6;20z(Gz- 173
(16) F(3a, 1/2—a; 1/2;2)= (1~ 2"° '
. x Fle, /6 — o; 1/2; (/21 (9 -82)2 (1- 27']
.« (45) F(3a, a+1/6; 1/2; 2} = (1-2)7%
“ % Fle, 1/6— a5 /25 (/2D (- 92U =77
(46) F(3e +1/2, 5/6 -« 3/2; 2z} =(1-82/9) {1 - 4z/3)—3° 32
*Fle+ }/2, a+ 1/6 3/2:2(9-82%(4z2-3)73]
(47) F(3a, + 1/2, a1 2/3; 3/2; 2) = (1~ z/9) (L4 2/3)73¥7
x Fla+ 1/2, a+ 5/6; 3/2; z2(z- 9% (z+ 377}
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APPENDIX 3

The representation of elementary functions ia terms of a hyperjeowetrice faaction:

From refereace [3]:

(1) (1+°=Flg b; b;—2)
(5) %+ YTy Y- TP, et % % 2
© Q-2 FleY, o 26 ) '
=(L-2)% Flo a1 ¥%; 2¢; 2) .
(1) (=272 1+ 2) = F(20 6+ 15 ¢ 2)

The truncated binomia! series follow:

<8 1-}(:) R (a) z" = (:) z" F(-jm, La~m+l; w_:;"’)_
NI T

I‘(a + 1)
= F 1- 1 ’ 2 ~ )
n==n'H( ) F(a-—rp) (”14,1) ! (” -+ - Hia >

(10} e ** = {2 cosh z) Ctanh z F[1+%a, ¥ +Yie; 1+ a; (cosh 2)77)
(1)) cos ez = Fl¥%a, ~¥% o 13 (sin 2)*?)

Cwecos z FI% a Ve ¥ Ve Yis (sin 2)?)

={cosz)® F{-¥a ¥ - Vg V- (tan z)?)

(12) sinaz=asinz FIh+4¥al~lia; 3/2 (sin 2)%]
=@ sin z cos z FI1+ Y% e, 1-Y% e; 3/2; (sin 2)?]

{13) sin™tz= 2 F(4, 3 3/2; 2%)
(14) tan™ Yz =z F(%4, 1; 3/2; —2%)
(15) log(z+ 1) =z F(1, 102 -z}

1+:z

(16) log ; =22 F(%, }; 8/2; 2%)

- Z
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From refereace [21]:

15.1.3 F(i,1;2;2)=—21tIn (l—z}l

114 PG LE A= ()
i —e

15.%.5 F(4,1;3; —2¥)=z"erctan z
15.1.6

Ft, 33 =0—20F(Q, 1 § 2)=2"" arcsin z

15.1.7
P58 —)=0+0, 15 —2)

' ==z In {2+ (1 F2)Y
15.1.8 Fla, b; b; 2)={1—2)""

1519 Flo, e b 2=H0+a " HI—2) ™)
15.1.10
Fla, }+a; # 29)=
2 (1—20) {0+ - (=)
15.1.11 o ‘
Flea,0l— )= HIOF P R HO 20—
15.1.12 ‘
Fla,1—a; 3 —2)=
3014 ) LN H O 2T
15.3.13 .
Fla, 3-+a; 1-H2a; 2)=2*[ -+ 021"
== (1—2)3F(1}e, 3a; 114295 z)
15.1.14
Fla, 2-ta; 22; ) =227 (12 HA— 2T

i ‘ .- sin [(2e—1}z
115 B (e, 1—e; 3 500 2) =-zﬁd{:€-—i§4§i—r}r£

. in [(2a—2
15116 Fle, 2-0; % siv’ 2)=§~§%—:iﬁ'%

15317 F(—a,q }; s’ 2)=cos {2az)

cos [(2c—1)2)

, e ein? o)es
15.1.18  F(e,1—a; %5 sm z)= 005 2

15.1.19 Fla, 3te % —tan? 2)==cos™ z €0S {2az)
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From referexce [22]:

9.121
1. F{~n, P b, —z == (1 [-z)“ ip arbitrz-.r}']

o (L oot S NP W U o0 i o e
2 r( 27 2 2:‘)‘“”7?_“

3. li:x;!"(——n, w; 2w -—-%)::(i —I—izt—)n.

4. r(w“_‘:i n—2. 38, f_)_ (t-p2p—r—a

2 T2 E T Znzm .

(41

F(i——n, 1 2 ._;),_d__wzw_—:n

rznl ] -
i
6. F(1, 4 2 —g=l00ED

-4z

in
7. F(l,_ 1 2 2 i

8. tmr{1, Ix 1 )nli—zhm! 1k 2 2) =

[ B-S Beazo

-—1}-z-]——hm!‘ 1, bl ;%)5.,.:8’.

k-roo

1 2® et
-Ia S I e——— =
9. lf.r: F( e K5 4;;:,-') 5 chz.
§* w0
oy bl 3. BN et sz
10, o F{k ¥y 735 g )=~ =75
4 apno
M tmp(E 2, S Ty
e PR TTol) A .
B er o0
. ‘. 22 .
12, :Lr:ni » K3 ——WD--cosz.
Ar-vco
N LI R I
13, 7 (?' 54 sin®z )= oo
3 . 2 .
A ; - s win® s Yem e .
14 7 (1’ 1 2"’ stz sy €3’
S | 3 z
15. # (H—, 5 —1g%z Svet
10 g ol n—3y 3 2 __ sinnz
16. f( F 2 T stn ) T hsin:®
n-+2 n—2_ 3 2, ___fﬂn’
i1. F( 7 T Tz 2 sin Hstnzeos s
S n—2 H—1 3_ to? ___‘-‘-Ezr-
Iy F —TETa TRy tg .,) TR

) At i ez coatt o2
10, {2k L _'1; _.13’-’3) e LI

n3inz

20. F(_"_ ~r. 1. sin'-’s):.—.cosnz-

"B PRI

WeER n—4 1 .o Y\ _fosnz

2%, F (-2—, —u— iy sin® z el
no o n a—1 1 __tosnz
2P -5, —Tym g wthZ)—c(,s-..,,-

FH T 101{3), GA ¥27[a

GA 127 3

GA 127 Illa

GA 1271V

GA121 vV

GA127 VI

GA 127 vTI

GA 127 VTl

GA 127 IX

GA 12T X

GA 127 X1
GA 127 X3

GA 127 XTI
CA L2 X1V
GA 121 XV

GA 127 XVi

GA 12T XV

GA 127 XVII

GA 12T XIX

EH 1101031}, GA 127 XX

EH I 101(11),GA 127 XXI

EH I 104(11),GA 127 XXU

GA 127 XXIIr

2
wor(F 82 R0-2) s ssia-aieg ]

20, I"(—‘-, {; 1; sin”z ) =sccz.
(cors'd)
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(coﬂt'd)
113, si o e

25, F (2_ 35 z-)m:‘"“z"” (cf. 9.123 13.).
27 f—‘(-‘- 1 3, _,.zz)--ai‘“"“ {cf. 9.121 13

. 5 153 i cf, 9 2.

o o f 3 ] 5
28. F (“z"- 1 %; —gt) = Arsh: (cl. 9121 26.).
E glen 1—n 5l aresin 2 '
29, # (350150 §1 o) Hntzesinn (cf. 9.421 16.).
. - ” _n j‘i_ 2 __ sin{z aresinz)
30. I (5 -+ N 1 PRI Z )———;;—P—}—*T:—z_?— (CI. 9.124 t?,).

r_1 .
—gi g z?) == ¢0s (# arcsin z)

t—n 1 . g2 ___cos(narcsinz)
vz Tz - 1z

(cf. 9.121 20)).

{cf. 0121 21.).





