Newbie: problem solving basic equations



I'm not sure what logexpand does, but clearly, we are nowhere near 
finding a solution to log(a*x)=C*log(b*x) for x!!!

See what I get...


(C1) logexpand:true;


(D1) 					  TRUE
(C2) solve(log(a*x)=C*log(b*x),x);


					     LOG(a x)
(D2) 				 [LOG(b x) = --------]
						C


David Holmgren wrote:

> Hi - Try this for a start (on the expression with the logs):
>   logexpand:true;
>   solve(log(a*x)-C*log(b*x),x);
> 
>  I have not yet found anything similar for exponentials...
> 
>  Dave Holmgren
> 
> Dr. David E. Holmgren,
> Imaging Scientist,
> SMART Technologies, Inc.
> Calgary, AB, Canada
> http://www.smarttech.com
> [403]-235-1452, ext. 251
> DavidHolmgren@smarttech.com
> 
> 
> 
>>-----Original Message-----
>>From:	Daniel Lemire [SMTP:lemire at ondelette]
>>Sent:	Monday, October 01, 2001 5:12 PM
>>To:	maxima@www.ma.utexas.edu
>>Subject:	[Maxima] Newbie: problem solving basic equations
>>
>>Good day,
>>
>>I think the "solve" function is broken. I just installed Maxima and 
>>tried solving a few elementary equations. In all cases but the very, 
>>very elementary ones, Maxima is no good, it seems. (See below.)
>>
>>
>>What am I missing? Surely, Maxima can do this?
>>
>>[lemire@romeo lemire]$ maxima
>>GCL (GNU Common Lisp)  Version(2.4.0) Wed May  9 12:02:00 CDT 2001
>>Licensed under GNU Library General Public License
>>Contains Enhancements by W. Schelter
>>Maxima 5.6 Wed May 9 12:01:49 CDT 2001 (with enhancements by W. Schelter).
>>Licensed under the GNU Public License (see file COPYING)
>>(C1) solve(exp(a*x)= C*exp(b*x),x);
>>
>>                                            a x
>>                                    b x   %E
>>(D1)                            [%E    = -----]
>>                                            C
>>(C2) solve(log(a*x)=C*log(b*x),x);
>>
>>                                          LOG(a x)
>>(D2)                         [LOG(b x) = --------]
>>                                             C
>>(C3) solve(a^x=b^x,x);
>>
>>                                      x    x
>>(D3)                               [b  = a ]
>>(C4) solve(m*x+b=y,x);
>>
>>                                        y - b
>>(D4)                              [x = -----]
>>                                          m
>>(C5)
>>-- 
>>Daniel Lemire, Ph.D.
>>
>>http://www.ondelette.com/
>>
>>
>>_______________________________________________
>>Maxima mailing list
>>Maxima@www.math.utexas.edu
>>http://www.math.utexas.edu/mailman/listinfo/maxima
>>
> 



-- 
Daniel Lemire, Ph.D.

http://www.ondelette.com/