reduce a complete vector



Have you tried
fullmapl(lambda([u],trigreduce(factorout(ratexpand(trigexpand(u)),sin,cos))),a)?

It returned

            [       SIN(tD + tC + tB)   SIN(tD + tC - tB)      ]
            [       ----------------- + -----------------                ]
(D20)   [          2                       2       ]
            [ r SIN(tB) COS(tD + 2 tC) - dA SIN(tB) SIN(tD + tC) ]
Dan Stanger
dan.stanger@ieee.org

alexandre@emc.ufsc.br wrote:

> I've
>  A:matrix([cos(tB)*(cos(tC)*SIN(tD)+sin(tC)*cos(tD))],
>  [r*sin(tB)*cos(tC)*(cos(tC)*cos(tD)-sin(tC)*sin(tD))
>  +sin(tB)*(-r*sin(tC)-dA)*(cos(tC)*sin(tD)+sin(tC)*COS(tD
>
> and I need get
>
> B:matrix([cos(tB)*sin(tD + tC)],[r*sin(tB)*cos(tD+2*tC) -
> dA*sin(tB)*sin(tD+tC)]);
>
> I try:
>
> fixup(x) :=trigreduce(factorout(ratexpand(trigexpand(x)),sin,cos));
> then
> map(fixup,A);
>
> but the result is not so simple...it's:
>
>              SIN(tD + tC + tB)   SIN(tD + tC - tB)
> (D8) MATRIX([----------------- + -----------------],
>                      2                   2
>
>  r SIN(tD + 2 tC + tB)   r SIN(tD - 2 tC + tB)
>  --------------------- + ---------------------
>            2                       2             r SIN(tD + 2 tC + tB)
> [--------------------------------------------- + ---------------------
>                        2                                   4
>
>    r SIN(tD + 2 tC - tB)   r SIN(tD - 2 tC - tB)
>    --------------------- + ---------------------
>              2                       2             r SIN(tD + 2 tC - tB)
>  - --------------------------------------------- - ---------------------
>                          2                                   4
>
>    dA COS(tD + tC + tB)   dA COS(tD + tC - tB)   r SIN(tD - 2 tC + tB)
>  + -------------------- - -------------------- - ---------------------
>             2                      2                       4
>
>    r SIN(tD - 2 tC - tB)
>  + ---------------------])
>              4
>
> is not so simple...
>
> _______________________________________________
> Maxima mailing list
> Maxima@www.math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima