/* * * diag([a1,a2,..]) * * ai is square matrix or one element * * Jordan cell JF(labmda,n),labmda is eigenvalue,n is size of matrix * * jordan(mat) is jordan form but represented by list * * we obtain matrix form ,dispJordan(this list) * * minimalPoly(this list) display minimalpolynomial of that matrix * * ModeMatrix(mat,this list) return ModeMatrix M, * * (M^^-1)AM=JF * * mat_function(analytic function,matrix) return f(matrix) * * this calculation is based on Cauchy integral formular. * * if f(x) is analytic and mat=diag([JF(m1,n1),,JF(mk,nk)]), * * then * * f(mat)=ModeMatrix*diag([f(JF(m1,n1)),,f(JF(mk,nk))])*ModeMatrix^^(-1)* * this method is only one of them,6~8or more other methods exist. * * so I cannot insist on this being best.but I think it very useful. * * please try jordan.dem * * I intended to write this program,after saw Barton's mat_exp.mc * * Partially because of Mathematica BUG , * * a:matix( [2,0,0,0,0,0,0,0], * * [1,2,0,0,0,0,0,0], * * [-4,1,2,0,0,0,0,0], * * [2,0,0,2,0,0,0,0], * * [-7,2,0,0,2,0,0,0], * * [9,0,-2,0,1,2,0,0], * * [-34,7,1,-2,-1,1,2,0], * * [145,-17,-16,3,9,-2,0,3])$ Mathematica returns wrong answer* * Jordan form,my program returns correct answer for this matrix * * this program is GPL. * */ /* Make an n element Maxima list [a,a,...a]. thank for Barton */ load("eigen")$ duplicate(a,n) := block([k], makelist(a,k,1,n))$ diag(x):= block([ mmatrix,z1,ztemp,zero,n,ntemp,sumn,i,j,k,s,front,back], mode_declare([z1,ztemp,zero],list,[mmatrix],any,[n,ntemp,sumn,i,j,k,s,front,back],fixnum), n:length(x),sumn:0,front:0,sold:0, /*gard*/ for i:1 thru n do ( if (matrixp(x[i])) then x[i]:x[i] else ( x[i]:matrix([x[i]])) ), /*sumn is matrix size */ for i:1 thru n do sumn:length(x[i])+sumn, ztemp:[],z1:[],back:sumn, for i:1 thru n do ( s:length(x[i]), back:back-s,front:front+sold, if (front=0) then zero:[] else ( zero:duplicate(0,front)), for k:1 thru s do ( ztemp:zero, for j:1 thru s do ( ztemp:endcons(x[i][k,j],ztemp) ), ztemp:append(ztemp,duplicate(0,back)), if (i=1 and k=1) then mmatrix:matrix(ztemp) else ( mmatrix:addrow(mmatrix,ztemp)) ), sold:s ), return(mmatrix))$ /*Jordan cell JF(labmda,n),labmda is eigenvalue,n is size of matrix */ JF(labmda,n):=block([mmatrix,ztemp,i], mode_declare([ztemp],list,[i,n],fixnum,[mmatrix],any), if (n <= 0) then ( print("can not calc JF"), return(0) )else ( if (n=1) then ( return(matrix([labmda])) ) else ( front:-1,back:n-1,ztemp:[], for i:1 thru n do ( front:front+1,back:back-1, if (front=0) then ( mmatrix:matrix(append([labmda,1],duplicate(0,back))) ) else ( if (front <= n-2) then ( ztemp:append(duplicate(0,front),[labmda,1],duplicate(0,back)), mmatrix:addrow(mmatrix,ztemp) ) else ( ztemp:append(duplicate(0,front),[labmda]), mmatrix:addrow(mmatrix,ztemp))) ), return(mmatrix))))$ /*jordan(matrix),return diag(JF(labmda1,n1),..,JF(labmdak,nk)) or list [[labmda1,n1,..nl],[labmda2,m1,..mj],..] and M matrix */ jordan(mat) := block( [JFLIST,eigenlist,multilist,zztemp,i,j,k,n,t,ii,neigen,tmpmulti, blocknum,pmulti,NJ,mattmp], mode_declare([i,j,k,n,t,ii,neigen,pmulti,tmpmulti,blocknum],fixnum,[JFLIST,eigenlist, multilist,NJ,zztemp],list,[mat,mattmp],any), n:length(mat), eigenlist:eigenvectors(mat), neigen:length(eigenlist[1][1]), multilist:eigenlist[1][2], JFLIST:[], for i:1 thru neigen do ( pmulti:multilist[i], zztemp:[],NJ:duplicate(0,pmulti),tmpmulti:0, if (pmulti=1) then ( zztemp:cons(1,zztemp) ) else ( mattmp:mat-(eigenlist[1][1][i])*ident(n), blocknum:n-rank(mattmp), if (blocknum=1) then ( zztemp:cons(pmulti,zztemp) ) else ( if (blocknum=pmulti) then ( for ii:1 thru pmulti do zztemp:cons(1,zztemp) ) else ( for k:2 while (pmulti #tmpmulti) do ( s:0, t:n-rank(mattmp^^k), if (k=2) then ( s:0 ) else ( for ii:1 thru k-2 do s:s+(k-ii)*NJ[ii]), NJ[k-1]:k*blocknum-s-t, for ii:1 thru NJ[k-1] do zztemp:cons(k-1,zztemp), tmpmulti:tmpmulti+NJ[k-1]*(k-1) )))), JFLIST:endcons(cons(eigenlist[1][1][i],zztemp),JFLIST) ), return(JFLIST))$ minimalPoly(a):=block([i,n,x], mode_declare([i,n],fixnum,[a],list,[x,T],any), n:length(a),T:1, for i:1 thru n do ( T:T*(x - a[i][1])^(a[i][2]) ), return(T))$ dispJordan(a):=block([i,n,p], mode_declare([i,n,j],fixnum,[a],list,[vtemp],any), n:length(a),vtemp:[], for i:1 thru n do ( for j:1 thru length(a[i])-1 do ( vtemp:endcons(JF(a[i][1],a[i][j+1]),vtemp) ) ), return(diag(vtemp)))$ /* [2,3,3,2,2,2,1,1,1] to [[3,2],[2,3],[1,3]] */ chlist(lis):= block([tes,arg1,i,m,counter], mode_declare([tes,i],fixnum,[ag1,lis],list), m:length(lis), arg1:[],tes:lis[2],counter:0, for i:2 thru m do ( if (tes=lis[i]) then ( counter:counter+1 ) else ( arg1:endcons([tes,counter],arg1), tes:lis[i], counter:1 ), if (i=m) then ( arg1:endcons([tes,counter],arg1) )), return(arg1))$ /* calc modematrix T ,T^^(-1)*A*T=JordanForm(A) */ ModeMatrix(a,F):= block([i,j,k,msize,lsize,firstflg,multiplist,mindeg,ev,xv,tmpv, IM,DRNK,modemat,rank1,rankdim,LIS,zerolist,localrank,solvec], mode_declare([i,j,k,msize,firstflg,mindeg,rank1,rankdim],fixnum,[multiplist,ev, xv,tmpv,LIS,zerolist,F],list,[a,IM,DRANK,modemat,solvec],any,[localrank],fixnum), lsize:length(F), msize:length(a), firstflg:0, zerolist:duplicate(0,msize), for i:1 thru lsize do ( ev:F[i][1],localrank:F[i][2], multiplist:chlist(F[i]), for j:1 thru length(multiplist) do ( mindeg:multiplist[j][1], localrank:multiplist[j][2], solvec[1]:matsolve2((a-ev*ident(msize))^^mindeg,zerolist), for k:2 thru mindeg do ( solvec[k]:transpose((a-ev*ident(msize)).solvec[k-1])[1] ), IM:ident(length(%RNUM_LIST)),rank1:0, for k:1 while (rank1 < localrank) do ( LIS:map("=",%RNUM_LIST,row(IM,k)[1]), tmpv:subst(LIS,solvec[mindeg]), if (tmpv #zerolist) then ( if (firstflg = 0 ) then ( DRANK:matrix(tmpv), rank1:1,firstflg:1, rankdim:1, modemat:matrix(tmpv), for l:mindeg-1 step -1 thru 1 do ( modemat:addrow(modemat,subst(LIS,solvec[l])) ) ) else ( if (rankdim < rank(addrow(DRANK,tmpv))) then ( DRANK:addrow(DRANK,tmpv), rankdim:rankdim+1,rank1:rank1+1, for l:mindeg step -1 thru 1 do ( modemat:addrow(modemat,subst(LIS,solvec[l])) )))) ) ) ), return(transpose(modemat)))$ /* matsolve2(mat,v0) v0 is start value of sequence of generarized eigenvectors */ matsolve2(mat,v0):=block([equation1,unkown1,solut1,solut2,dm1, index1,mat1,vectr1,vectr2,unkw,%RNUM], mode_declare([equation1,unkown1,solut1,solut2],list, [dm1,index1],fixnum, [vectr1,vectr2,unkw,mat1],any), dm1:length(mat), unkown1:[], for index1 thru dm1 do unkown1:endcons(concat(unkw,index1),unkown1), vectr1:transpose(matrix(unkown1)), vectr2:transpose(matrix(v0)), mat1:mat.vectr1-vectr2, equation1:[], for index1 thru dm1 do equation1:cons(mat1[index1,1],equation1), %RNUM:0, solut1:ALGSYS(equation1,unkown1), if solut1=[] then ( print("endreach ,I cannot solve this"),return([]) ) else ( solut2:map('RHS,solut1[1]), return(solut2)))$ ghelp(f,labmda,k):=subst(labmda,z,diff(f(z),z,k)/k!)$ /* f must be analytic function, a is matrix */ mat_function(f,a):=block([i,j,ii,n,p,L1,L2,b,tempmat,siftmat], mode_declare([i,n,j,ii],fixnum,[L1,L2],list,[a,vtemp,b,tempmat,modemat],any), L2:jordan(a), n:length(L2),vtemp:[], for i:1 thru n do ( for j:1 thru length(L2[i])-1 do ( L1:[], for ii:0 thru L2[i][j+1]-1 do ( L1:endcons(ghelp(f,L2[i][1],ii),L1) ), tempmat:matrix(L1), siftmat:JF(0,L2[i][j+1]), b:tempmat, for ii:1 thru L2[i][j+1]-1 do ( tempmat: (tempmat . siftmat), b:addrow(b,tempmat) ), vtemp:endcons(b,vtemp) ) ), modemat:ModeMatrix(a,L2), return(modemat.diag(vtemp).(modemat)^^-1))$