/* This file is to be run by the EXAMPLE command, and may not otherwise work. The following are either acceptable lines to maxima, or they are two successive '&' characters immediately following a '$' or ';' and then followed by the name of the section of examples, and then followed by a sequence of maxima forms. */ && ADDITIVE DECLARE(F,ADDITIVE); F(2*A+3*B);&& ALGSYS F1:2*X*(1-L1)-2*(X-1)*L2$ F2:L2-L1$ F3:L1*(1-X**2-Y)$ F4:L2*(Y-(X-1)**2)$ ALGSYS([F1,F2,F3,F4],[X,Y,L1,L2]); F1:X**2-Y**2$ F2:X**2-X+2*Y**2-Y-1$ ALGSYS([F1,F2],[X,Y]);&& ALLROOTS (2*X+1)^3=13.5*(X^5+1); ALLROOTS(%);&& ANTISYMMETRIC DECLARE(H,ANTISYMMETRIC); H(X,Z,Y);&& APPEND APPEND([Y+X,0,-3.2],[2.5E20,X]);&& ARRAYINFO B[1,X]:1$ ARRAY(F,2,3); ARRAYINFO(B); ARRAYINFO(F);&& ARRAYS A[N]:=N*A[N-1]; A[0]:1$ A[5]; A[N]:=N$ A[6]; A[4];&& AT ATVALUE(F(X,Y),[X=0,Y=1],A^2); ATVALUE('DIFF(F(X,Y),X),X=0,Y+1); PRINTPROPS(ALL,ATVALUE); DIFF(4*F(X,Y)^2-U(X,Y)^2,X); AT(%,[X=0,Y=1]);&& ATVALUE kill(f,x,a,u,g); ATVALUE(F(X,Y),[X=0,Y=1],A^2)$ ATVALUE('DIFF(F(X,Y),X),X=0,Y+1); PRINTPROPS(ALL,ATVALUE); DIFF(4*F(X,Y)^2-U(X,Y)^2,X); AT(%,[X=0,Y=1]);&& AUGCOEFMATRIX [2*X-(A-1)*Y=5*B,A*X+B*Y+C=0]$ AUGCOEFMATRIX(%,[X,Y]);&& BEZOUT BEZOUT(A*Y+X^2+1,Y^2+X*Y+B,X); EXPAND(DETERMINANT(%)); %-EXPAND(RESULTANT(A*Y+X^2+1,Y^2+X*Y+B,X));&& BLOCK kill(f); HESSIAN(F):=BLOCK([DFXX,DFXY,DFXZ,DFYY,DFYZ,DFZZ], DFXX:DIFF(F,X,2),DFXY:DIFF(F,X,1,Y,1), DFXZ:DIFF(F,X,1,Z,1),DFYY:DIFF(F,Y,2), DFYZ:DIFF(F,Y,1,Z,1),DFZZ:DIFF(F,Z,2), DETERMINANT(MATRIX([DFXX,DFXY,DFXZ],[DFXY,DFYY,DFYZ], [DFXZ,DFYZ,DFZZ])))$ kill(x,y,z); HESSIAN(X^3-3*A*X*Y*Z+Y^3); SUBST(1,Z,QUOTIENT(%,-54*A^2)); F(X):=BLOCK([Y,use_fast_arrays:FALSE], LOCAL(A), Y:4, A[Y]:X, DISPLAY(A[Y]))$ Y:2$ A[Y+2]:0$ F(9); Ff(X):=BLOCK([Y,A,use_fast_arrays:true], Y:4, A[Y]:X, DISPLAY(A[Y]))$ Ff(10); A[Y+2];&& BOTHCOEFF ISLINEAR(EXP,VAR):=BLOCK([C], C:BOTHCOEF(RAT(EXP,VAR),VAR), IS(FREEOF(VAR,C) AND C[1]#0))$ ISLINEAR((R^2-(X-R)^2)/X,X);&& CATCH G(L):=CATCH(MAP(LAMBDA([X],IF X<0 THEN THROW(X) ELSE F(X)),L))$ G([1,2,3,7]); G([1,2,-3,7]);&& CF CF([1,2,-3]+[1,-2,1]); CFDISREP(%); CFLENGTH:4$ CF(SQRT(3)); CFEXPAND(%); EV(%[1,2]/%[2,2],NUMER);&& CFDISREP CF([1,2,-3]+[1,-2,1]); CFDISREP(%);&& CFEXPAND CFLENGTH:4$ CF(SQRT(3)); CFEXPAND(%); EV(%[1,2]/%[2,2],NUMER);&& CHANGEVAR 'INTEGRATE(%E^(SQRT(A)*SQRT(Y)),Y,0,4); CHANGEVAR(%,Y-Z^2/A,Z,Y);&& CHARPOLY A:MATRIX([3,1],[2,4]); EXPAND(CHARPOLY(A,LAMBDA)); (PROGRAMMODE:TRUE,SOLVE(%)); MATRIX([X1],[X2]); EV(A.%-LAMBDA*%,%TH(2)[1]); %[1,1]=0; X1^2+X2^2=1; SOLVE([%TH(2),%],[X1,X2]);&& COEFF COEFF(2*A*TAN(X)+TAN(X)+B=5*TAN(X)+3,TAN(X)); COEFF(Y+X*%E^X+1,X,0);&& COMBINE COMBINE(A/X+B/X+A/Y+B/Y);&& COMMUTATIVE DECLARE(H,COMMUTATIVE); H(X,Z,Y);&& COMPLEX (SQRT(-4)+SQRT(2.25))^2; EXPAND(%); EXPAND(SQRT(2*%I));&& CONTENT CONTENT(2*X*Y+4*X^2*Y^2,Y);&& DEFMATCH NONZEROANDFREEOF(X,E):=IS(E#0 AND FREEOF(X,E)); MATCHDECLARE(A,NONZEROANDFREEOF(X),B,FREEOF(X)); DEFMATCH(LINEAR,A*X+B,X); LINEAR(3*Z+(Y+1)*Z+Y**2,Z); MATCHDECLARE([A,F],TRUE); CONSTINTERVAL(L,H):=CONSTANTP(H-L)$ MATCHDECLARE(B,CONSTINTERVAL(A))$ MATCHDECLARE(X,ATOM)$ BLOCK(REMOVE(INTEGRATE,OUTATIVE), DEFMATCH(CHECKLIMITS,'INTEGRATE(F,X,A,B)), DECLARE(INTEGRATE,OUTATIVE))$ 'INTEGRATE(SIN(T),T,X+%PI,X+2*%PI)$ CHECKLIMITS(%); 'INTEGRATE(SIN(T),T,0,X)$ CHECKLIMITS(%); REMVALUE(A,B,F,X)$&& DEFTAYLOR DEFTAYLOR(F(X),X^2+SUM(X^I/(2^I*I!^2),I,4,INF)); TAYLOR(%E^SQRT(F(X)),X,0,4);&& DELETE DELETE(SIN(X),X+SIN(X)+Y);&& DEPENDS kill(a,x,f,y,t); DEPENDS(A,X); DIFF(A.A,X); DEPENDS(F,[X,Y],[X,Y],T); DIFF(F,T);&& DERIVDEGREE 'DIFF(Y,X,2)+'DIFF(Y,Z,3)*2+'DIFF(Y,X)*X^2; DERIVDEGREE(%,Y,X);&& DESOLVE EQN1:'DIFF(F(X),X)='DIFF(G(X),X)+SIN(X); EQN2:'DIFF(G(X),X,2)='DIFF(F(X),X)-COS(X); ATVALUE('DIFF(G(X),X),X=0,A); ATVALUE(F(X),X=0,1); DESOLVE([EQN1,EQN2],[F(X),G(X)]); /* VERIFICATION */ [EQN1,EQN2],%,DIFF;&& DIFF kill(f,g,h,x,y); DIFF(SIN(X)+X^3+2*X^2,X); DIFF(SIN(X)*COS(X),X); DIFF(SIN(X)*COS(X),X,2); DERIVABBREV:TRUE$ DIFF(EXP(F(X)),X,2); 'INTEGRATE(F(X,Y),Y,G(X),H(X)); DIFF(%,X);&& DISPLAY DISPLAY(B[1,2]);&& DIVIDE DIVIDE(X+Y,X-Y,X); DIVIDE(X+Y,X-Y);&& DO FOR A:-3 THRU 26 STEP 7 DO LDISPLAY(A)$ S:0$ FOR I:1 WHILE I<=10 DO S:S+I; S; SERIES:1$ TERM:EXP(SIN(X))$ FOR P:1 UNLESS P>7 DO (TERM:DIFF(TERM,X)/P, SERIES:SERIES+SUBST(X=0,TERM)*X^P)$ SERIES; POLY:0$ FOR I:1 THRU 5 DO FOR J:I STEP -1 THRU 1 DO POLY:POLY+I*X^J$ POLY; GUESS:-3.0$ FOR I THRU 10 DO (GUESS:SUBST(GUESS,X,0.5*(X+10/X)), IF ABS(GUESS^2-10)<0.00005 THEN RETURN(GUESS)); FOR COUNT:2 NEXT 3*COUNT THRU 20 DO LDISPLAY(COUNT)$ X:1000; THRU 10 WHILE X#0 DO X:0.5*(X+5/X)$ X; REMVALUE(X); NEWTON(F,GUESS):=BLOCK([NUMER,Y],local(f,df,x,guess), NUMER:TRUE, DEFINE(DF(X),DIFF(F(X),X)), DO (Y:DF(GUESS), IF Y=0 THEN ERROR( "derivative at",GUESS,"is zero"), GUESS:GUESS-F(GUESS)/Y, IF ABS(F(GUESS))<5.0E-6 THEN RETURN(GUESS)))$ SQR(X):=X^2-5.0$ NEWTON(SQR,1000); FOR F IN [LOG, RHO, ATAN] DO LDISP(F(1.0))$ EV(CONCAT(E,LINENUM-1),NUMER);&& DOTSCRULES DECLARE(L,SCALAR,[M1,M2,M3],NONSCALAR); EXPAND((1-L*M1).(1-L*M2).(1-L*M3)); %,DOTSCRULES; RAT(%,L);&& DPART DPART(X+Y/Z^2,1,2,1); EXPAND((B+A)^4); (B+A)^2*(Y+X)^2; EXPAND(%); %TH(3)/%; FACTOR(%); DPART(%TH(2),2,4); PART(%TH(3),2,4);&& ECHELON MATRIX([2,1-A,-5*B],[A,B,C]); ECHELON(%);&& ELIMINATE EXP1:2*X^2+Y*X+Z; EXP2:3*X+5*Y-Z-1; EXP3:Z^2+X-Y^2+5; ELIMINATE([EXP3,EXP2,EXP1],[Y,Z]);&& ENTERMATRIX ENTERMATRIX(2,1);&& EQUATIONS X+1=Y^2; X-1=2*Y+1$ %TH(2)+%; %TH(3)/Y; 1/%;&& EV kill(y,x,w); SIN(X)+COS(Y)+(W+1)^2+'DIFF(SIN(W),W); EV(%,SIN,EXPAND,DIFF,X=2,Y=1); EV(X+Y,X:A+Y,Y:2); 'DIFF(Y^2+X*Y+X^2,X,2,Y,1); EV(%,DIFF); 2*X-3*Y=3$ -3*X+2*Y=-4$ SOLVE([%TH(2),%]); EV(%TH(3),%); X+1/X>GAMMA(1/2); EV(%,NUMER,X=1/2); EV(%,PRED);&& EVALUATION DIFF(X*F(X),X); F(X):=SIN(X)$ EV(%TH(2),DIFF); X; X:3$ X; 'X; F(X):=X^2; 'F(2); EV(%,F); '(F(2)); ''%; SUM(I!,I,1,4); 'SUM(I!,I,1,4); REMVALUE(X); 'INTEGRATE(F(X),X,A,B); FOR I THRU 5 DO S:S+I^2; S; EV(%,S:0); EV(%TH(2)); 'SUM(G(I),I,0,N); Z*%E^Z; EV(%,Z:X^2); SUBST(X^2,Z,%TH(3)); A:%; A+1; KILL(A,y); A; /* DECLARE(INTEGRATE,NOUN)$ */ INTEGRATE(Y^2,Y); ''INTEGRATE(Y^2,Y); F(Y):=DIFF(Y*LOG(Y),Y,2); F(Y):=''(DIFF(Y*LOG(Y),Y,2)); ''(CONCAT(C,LINENUM-1)); (X+Y)^3$ DIFF(%,X); Y:X^2+1$ ''(CONCAT(C,LINENUM-2));&& EVENFUN DECLARE(G,EVENFUN); G(-X);&& EXP EV(%E^X*SIN(X)^2,EXPONENTIALIZE); kill(x); INTEGRATE(%,X); EV(%,DEMOIVRE); ANS:EV(%,RATEXPAND); EV(%,X:1,NUMER)-EV(%,X:0,NUMER); INTEGRATE(%E^X*SIN(X)^2,X); TRIGREDUCE(%); %-ANS; EV(SIN(X),%EMODE);&& EXPAND (1/(X+Y)^4-3/(Y+Z)^3)^2; EXPAND(%,2,0); EXPAND(A.(B+C.(D+E)+F)); EXPAND((X+1)^3); (X+1)^7; EXPAND(%); EXPAND(%TH(2),7,7); EV(A*(B+C)+A*(B+C)^2,EXPOP:1);&& FACTCOMB (N+1)^2*N!^2; FACTCOMB(%);&& FACTOR FACTOR(2^63-1); FACTOR(Z^2*(X+2*Y)-4*X-8*Y); X^2*Y^2+2*X*Y^2+Y^2-X^2-2*X-1; BLOCK([DONTFACTOR:[X]],FACTOR(%/36/(Y^2+2*Y+1))); FACTOR(%E^(3*X)+1); FACTOR(X^4+1,A^2-2); FACTOR(X^3+X^2*Y^2-X*Z^2-Y^2*Z^2); (X+2)/(X+3)/(X+B)/(X+C)^2; RATSIMP(%); PARTFRAC(%,X); MAP('FACTOR,%); RATSIMP((X^5-1)/(X-1)); SUBST(A,X,%); FACTOR(%TH(2),%); FACTOR(X^12+1); FACTOR(X^99+1);&& FACTORSUM EV((X+1)*((U+V)^2+A*(W+Z)^2),EXPAND); FACTORSUM(%);&& FEATUREP DECLARE(J,EVEN)$ FEATUREP(J,INTEGER);&& FREEOF FREEOF(Y,SIN(X+2*Y)); FREEOF(COS(Y),"*",SIN(Y)+COS(X));&& FULLMAP FULLMAP(G,A+B*C); MAP(G,A+B*C);&& FULLMAPL FULLMAPL("+",[3,[4,5]],[[A,1],[0,-1.5]]);&& FUNCSOLVE FUNCSOLVE((N+1)*F(N)-(N+3)*F(N+1)/(N+1)=(N-1)/(N+2),F(N));&& functions KILL(X,Y,F,G,H); F(X):=X^2+Y; F(2); EV(F(2),Y:7); F(X):=SIN(X)^2+1; F(X+1); G(Y,Z):=F(Z)+3*Y; EV(G(2*Y+Z,-0.5),Y:7); H(N):=SUM(I*X^I,I,0,N); FUNCTIONS; T[N](X):=RATEXPAND(2*X*T[N-1](X)-T[N-2](X)); T[0](X):=1$ T[1](X):=X$ T[4](Y); G[N](X):=SUM(EV(X),I,N,N+2); H(N,X):=SUM(EV(X),I,N,N+2); G[2](I^2); H(2,I^2); P[N](X):=RATSIMP(1/(2^N*N!)*DIFF((X^2-1)^N,X,N)); Q(N,X):=RATSIMP(1/(2^N*N!)*DIFF((X^2-1)^N,X,N)); P[2]; P[2](Y+1); Q(2,Y); P[2](5); F[I,J](X,Y):=X^I+Y^J; G(FUN,A,B):=PRINT(FUN," applied to ",A," and ",B," is ",FUN(A,B))$ G(F[2,1],SIN(%PI),2*C);&& GENMATRIX H[I,J]:=1/(I+J-1)$ GENMATRIX(H,3,3);&& GET PUT(%E,TRANSCENDENTAL,TYPE); PUT(%PI,TRANSCENDENTAL,TYPE)$ PUT(%I,ALGEBRAIC,TYPE)$ TYPEOF(X):=BLOCK([Q], IF NUMBERP(X) THEN RETURN(ALGEBRAIC), IF NOT ATOM(X) THEN RETURN(MAPLIST(TYPEOF,X)), Q:GET(X,TYPE), IF Q=FALSE THEN ERROR("NOT NUMERIC") ELSE Q)$ ERRCATCH(TYPEOF(2*%E+X*%PI)); TYPEOF(2*%E+%PI);&& GFACTOR GFACTOR(X^4-1);&& GRADEF DEPENDS(Y,X); kill(f,g,j); GRADEF(F(X,Y),X^2,G(X,Y)); DIFF(F(X,Y),X); GRADEF(J(N,Z),'DIFF(J(N,Z),N), J(N-1,Z)-N/Z*J(N,Z))$ RATSIMP(DIFF(J(2,X),X,2));&& HORNER POLY:1.0E-20*X^2-5.5*X+5.2E20; ERRCATCH(EV(%,X=1.0E20)); HORNER(POLY,X),KEEPFLOAT; EV(%,X=1.0E20);&& IF FIB[N]:=IF N=1 OR N=2 THEN 1 ELSE FIB[N-1]+FIB[N-2]; FIB[1]+FIB[2]; FIB[3]; FIB[5]; ETA(MU,NU):=IF MU=NU THEN MU ELSE IF MU>NU THEN MU-NU ELSE MU+NU; ETA(5,6); ETA(ETA(7,7),ETA(1,2)); IF NOT 5>=2 AND 6<=5 OR 4+1>3 THEN A ELSE B;&& ILT 'INTEGRATE(SINH(A*X)*F(T-X),X,0,T)+B*F(T)=T^2; LAPLACE(%,T,S); LINSOLVE([%],['LAPLACE(F(T),T,S)]); ILT(EV(%[1]),S,T);&& INPART X+Y+W*Z; INPART(%,3,2); 'LIMIT(F(X)^G(X+1),X,0,MINUS); INPART(%,1,2);&& INTEGRATE test(f):=block([u],u:integrate(f,x),ratsimp(f-diff(u,x))); test(sin(x)); test(1/(1+x)); test(1/(1+x^2)); INTEGRATE(SIN(X)^3,X); kill(q)$ INTEGRATE(%E^X/(%E^X+2),X); INTEGRATE(1/(X*LOG(X)),X); INTEGRATE(SIN(2*X+3),X); INTEGRATE(%E^X*ERF(X),X); INTEGRATE(X/(X^3+1),X); DIFF(%,X); RATSIMP(%); INTEGRATE(X^(5/4)/(X+1)^(5/2),X,0,INF); GRADEF(Q(X),SIN(X^2)); DIFF(LOG(Q(R(X))),X); INTEGRATE(%,X);&& IS IS(X^2>=2*X-1); ASSUME(A>1); IS(LOG(LOG(A+1)+1)>0 AND A^2+1>2*A);&& ISOLATE (A+B)^4*(1+X*(2*X+(C+D)^2)); ISOLATE(%,X); RATEXPAND(%)$ EV(%); (A+B)*(X+A+B)^2*%E^(X^2+A*X+B); ISOLATE(%,X),EXPTISOLATE:TRUE;&& LAMBDA LAMBDA([X,Y,Z],X^2+Y^2+Z^2); %(1,2,A); "+"(1,2,A);&& LAPLACE LAPLACE(%E^(2*T+A)*SIN(T)*T,T,S);&& LASSOCIATIVE DECLARE(G,LASSOCIATIVE); G(G(A,B),G(C,D)); G(G(A,B),G(C,D))-G(A,G(B,G(C,D)));&& LET MATCHDECLARE([A,A1,A2],TRUE); ONELESS(X,Y):=IS(X=Y-1)$ LET(A1*A2!,A1!,ONELESS,A2,A1); LET(A1!/A1,(A1-1)!),LETRAT; LETSIMP(N*M!*(N-1)!/M),LETRAT; LET(SIN(A)^2,1-COS(A)^2); SIN(X)^4; LETSIMP(%);&& LETRULES MATCHDECLARE([A,A1,A2],TRUE); ONELESS(X,Y):=IS(X=Y-1)$ LET(A1*A2!,A1!,ONELESS,A2,A1); LET(A1!/A1,(A1-1)!),LETRAT; LETSIMP(N*M!*(N-1)!/M),LETRAT; LET(SIN(A)^2,1-COS(A)^2); SIN(X)^4; LETSIMP(%);&& LIMIT LIMIT(X*LOG(X),X,0,PLUS); LIMIT((1+X)^(1/X),X,0); LIMIT(%E^X/X,X,INF); LIMIT(SIN(1/X),X,0);&& LINEAR DECLARE(F,LINEAR); F(2*A+3*B); F(2*X+Y,X);&& LINSOLVE X+Z=Y$ 2*A*X-Y=2*A^2$ Y-2*Z=2$ LINSOLVE([%TH(3),%TH(2),%],[X,Y,Z]),GLOBALSOLVE;&& LISTOFVARS LISTOFVARS(F(X[1]+Y)/G^(2+A));&& LISTS [X^2,Y/3,-2]; %[1]*X; [A,%TH(2),%];&& LOGCONTRACT 2*(A*LOG(X) + 2*A*LOG(Y)); LOGCONTRACT(%); LOGCONTRACT(LOG(SQRT(X+1)+SQRT(X)) + LOG(SQRT(X+1)-SQRT(X)));&& MAP MAP(F,X+A*Y+B*Z); MAP(LAMBDA([U],PARTFRAC(U,X)),X+1/(X^3+4*X^2+5*X+2)); MAP(RATSIMP, X/(X^2+X)+(Y^2+Y)/Y); MAP("=",[A,B],[-0.5,3]);&& MATCHDECLARE MATCHDECLARE(A,TRUE)$ TELLSIMP(SIN(A)^2,1-COS(A)^2)$ SIN(Y)^2; KILL(RULES); NONZEROANDFREEOF(X,E):=IS(E#0 AND FREEOF(X,E)); MATCHDECLARE(A,NONZEROANDFREEOF(X),B,FREEOF(X)); DEFMATCH(LINEAR,A*X+B,X); LINEAR(3*Z+(Y+1)*Z+Y**2,Z); MATCHDECLARE([A,F],TRUE); CONSTINTERVAL(L,H):=CONSTANTP(H-L)$ MATCHDECLARE(B,CONSTINTERVAL(A))$ MATCHDECLARE(X,ATOM)$ BLOCK(REMOVE(INTEGRATE,OUTATIVE), DEFMATCH(CHECKLIMITS,'INTEGRATE(F,X,A,B)), DECLARE(INTEGRATE,OUTATIVE))$ 'INTEGRATE(SIN(T),T,X+%PI,X+2*%PI)$ CHECKLIMITS(%); 'INTEGRATE(SIN(T),T,0,X)$ CHECKLIMITS(%);&& MATRICES M:MATRIX([A,0],[B,1]); M^2; M.M; M[1,1]*M; %-%TH(2)+1; M^^-1; [X,Y].M; MATRIX([A,B,C],[D,E,F],[G,H,I]); %^^2;&& MINFACTORIAL N!/(N+1)!; MINFACTORIAL(%);&& MULTIPLICATIVE DECLARE(F,MULTIPLICATIVE); F(2*A*B);&& MULTTHRU X/(X-Y)^2-1/(X-Y)-F(X)/(X-Y)^3; MULTTHRU((X-Y)^3,%); RATEXPAND(%); ((A+B)^10*S^2+2*A*B*S+(A*B)^2)/(A*B*S^2); MULTTHRU(%); MULTTHRU(A.(B+C.(D+E)+F));&& NARY DECLARE(J,NARY); J(J(A,B),J(C,D));&& NOUNIFY 'LIMIT(F(X)^G(X+1),X,0,MINUS); IS(INPART(%,0)=NOUNIFY(LIMIT));&& NROOTS X^10-2*X^4+1/2; NROOTS(%,-6,9.1);&& NUMFACTOR GAMMA(7/2); NUMFACTOR(%);&& NUSUM NUSUM(N*N!,N,0,N); NUSUM(N^4*4^N/BINOMIAL(2*N,N),N,0,N); UNSUM(%,N); UNSUM(PROD(I^2,I,1,N),N); NUSUM(%,N,1,N);&& ODDFUN DECLARE(F,ODDFUN); F(-X);&& ODE2 X^2*'DIFF(Y,X) + 3*X*Y = SIN(X)/X; SOLN1:ODE2(%,Y,X); IC1(SOLN1,X=%PI,Y=0); 'DIFF(Y,X,2) + Y*'DIFF(Y,X)^3 = 0; SOLN2:ODE2(%,Y,X); RATSIMP(IC2(SOLN2,X=0,Y=0,'DIFF(Y,X)=2)); BC2(SOLN2,X=0,Y=1,X=1,Y=3);&& OPTIMIZE DIFF(EXP(X^2+Y)/(X+Y),X,2); OPTIMIZE(%);&& ORDERGREAT A^2+B*X; ORDERGREAT(A); A^2+B*X; %-%TH(3); UNORDER();&& ORDERLESS Y^2+B*X; ORDERLESS(Y); Y^2+B*X; %-%TH(3); UNORDER();&& OUTATIVE DECLARE(F,OUTATIVE); F(2*A);&& PART X+Y/Z^2; PART(%,1,2,2); REMVALUE(X); 'INTEGRATE(F(X),X,A,B)+X; PART(%,1,1); X^2+2*X=Y^2; %+1; LHS(%); PART(%TH(2),2); PART(%,1); 27*Y^3+54*X*Y^2+36*X^2*Y+Y+8*X^3+X+1; PART(%,2,[1,3]); SQRT(PIECE/54);&& PARTFRAC 2/(X+2)-2/(X+1)+1/(X+1)^2; RATSIMP(%); PARTFRAC(%,X);&& PARTITION PARTITION(2*A*X*F(X),X); PARTITION(A+B,X);&& PICKAPART INTEGRATE(1/(X^3+2),X)$ PICKAPART(%,1);&& POISSIMP PFEFORMAT:TRUE$ POISSIMP(SIN(X)^2); (2*A^2-B)*COS(X+2*Y)-(A*B+5)*SIN(U-4*X); POISEXPT(%,2)$ PRINTPOIS(%); POISINT(%TH(2),Y)$ POISSIMP(%); POISSIMP(SIN(X)^5+COS(X)^5); PFEFORMAT:FALSE$&& POLARFORM RECTFORM(SIN(2*%I+X)); POLARFORM(%); RECTFORM(LOG(3+4*%I)); POLARFORM(%); RECTFORM((2+3.5*%I)^0.25),NUMER; POLARFORM(%);&& POLY_discriminant FACTOR(POLY_DISCRIMINANT((X-A)*(X-B)*(X-C),X));&& POSFUN DECLARE(F,POSFUN); IS(F(X)>0);&& POWERSERIES POWERSERIES(LOG(SIN(X)/X),X,0);&& PRINTPROPS GRADEF(R,X,X/R)$ GRADEF(R,Y,Y/R)$ PRINTPROPS(R,ATOMGRAD); PROPVARS(ATOMGRAD);&& PRODUCT PRODUCT(X+I*(I+1)/2,I,1,4);&& PROPERTIES PROPERTIES(CONS); ASSUME(VAR1>0); PROPERTIES(VAR1); VAR2:2$ PROPERTIES(VAR2);&& PROPVARS GRADEF(R,X,X/R)$ GRADEF(R,Y,Y/R)$ PRINTPROPS(R,ATOMGRAD); PROPVARS(ATOMGRAD);&& QUNIT QUNIT(17); EXPAND(%*(SQRT(17)-4));&& RADCAN (LOG(X^2+X)-LOG(X))^A/LOG(X+1)^(A/2); RADCAN(%); LOG(A^(2*X)+2*A^X+1)/LOG(A^X+1); RADCAN(%); (%E^X-1)/(%E^(X/2)+1); RADCAN(%);&& RANK MATRIX([2,1-A,-5*B],[A,B,C]); RANK(%);&& RASSOCIATIVE DECLARE(G,RASSOCIATIVE); G(G(A,B),G(C,D)); G(G(A,B),G(C,D))-G(A,G(B,G(C,D)));&& RAT RAT(X^2); DIFF(F(%),X); ((X-2*Y)^4/(X^2-4*Y^2)^2+1)*(Y+A)*(2*Y+X)/(4*Y^2+X^2); RAT(%,Y,A,X); (X+3)^20; RAT(%); DIFF(%,X); FACTOR(%);&& RATCOEFF A*X+B*X+5$ RATCOEF(%,A+B);&& RATDIFF (4*X^3+10*X-11)/(X^5+5); MOD(%),MODULUS:3; RATDIFF(%TH(2),X);&& RATEXPAND RATEXPAND((2*X-3*Y)^3); (X-1)/(X+1)^2+1/(X-1); EXPAND(%); RATEXPAND(%TH(2));&& RATSIMP SIN(X/(X^2+X))=%E^((LOG(X)+1)^2-LOG(X)^2); RATSIMP(%); B*(A/B-X)+B*X+A; RATSIMP(%); ((X-1)^(3/2)-(X+1)*SQRT(X-1))/SQRT(X-1)/SQRT(X+1); RATSIMP(%); X^(A+1/A),RATSIMPEXPONS;&& RATSUBST RATSUBST(A,X*Y^2,X^4*Y^8+X^4*Y^3); 1 + COS(X) + COS(X)^2 + COS(X)^3 + COS(X)^4; RATSUBST(1-SIN(X)^2,COS(X)^2,%); RATSUBST(1-COS(X)^2,SIN(X)^2,SIN(X)^4);&& RATWEIGHT RATWEIGHT(A,1,B,1); RAT(A+B+1); %^2; EV(%TH(2)^2,RATWTLVL:1);&& REALPART (%I*V+U)/(F+%I*E)+%E^(%I*ALPHA); REALPART(%);&& REALROOTS REALROOTS(X^5-X-1,5.0E-6); %[1],FLOAT; X^5-X-1,%;&& RESIDUE RESIDUE(S/(S^2+A^2),S,A*%I); RESIDUE(SIN(A*X)/X^4,X,0);&& RESULTANT RESULTANT(A*Y+X^2+1,Y^2+X*Y+B,X);&& REVEAL INTEGRATE(1/(X^3+2),X)$ REVEAL(%,2); REVEAL(%TH(2),3);&& REVERSE UNION(X,Y):=IF X=[] THEN Y ELSE IF MEMBER(T:FIRST(X),Y) THEN UNION(REST(X),Y) ELSE CONS(T,UNION(REST(X),Y))$ UNION([A,B,1,1/2,X^2],[-X^2,A,Y,1/2]); BERNPOLY(X,5); MAPLIST(NUMFACTOR,%); APPLY(MIN,%);&& RISCH RISCH(X^2*ERF(X),X); DIFF(%,X),RATSIMP;&& ROOTSCONTRACT ROOTSCONMODE:FALSE$ ROOTSCONTRACT(X^(1/2)*Y^(3/2)); ROOTSCONTRACT(X^(1/2)*Y^(1/4)); ROOTSCONMODE:TRUE$ ROOTSCONTRACT(X^(1/2)*Y^(1/4)); ROOTSCONTRACT(X^(1/2)*Y^(1/3)); ROOTSCONMODE:ALL$ ROOTSCONTRACT(X^(1/2)*Y^(1/4)); ROOTSCONTRACT(X^(1/2)*Y^(1/3)); ROOTSCONMODE:FALSE$ ROOTSCONTRACT(SQRT(SQRT(X+1)+SQRT(X))*SQRT(SQRT(X+1)-SQRT(X))); ROOTSCONMODE:TRUE$ ROOTSCONTRACT(SQRT(SQRT(5)+5)-5^(1/4)*SQRT(SQRT(5)+1));&& SCANMAP (A^2+2*A+1)*Y+X^2; SCANMAP(FACTOR,%); SCANMAP(FACTOR,EXPAND(%TH(2))); U*V^(A*X+B)+C; SCANMAP('F,%);&& SCSIMP EXP:K^2*N^2+K^2*M^2*N^2-K^2*L^2*N^2-K^2*L^2*M^2*N^2; EQ1:K^2+L^2=1; EQ2:N^2-M^2=1; SCSIMP(EXP,EQ1,EQ2); EXQ:(K1*K4-K1*K2-K2*K3)/K3^2; EQ3:K1*K4-K2*K3=0; EQ4:K1*K2+K3*K4=0; SCSIMP(EXQ,EQ3,EQ4);&& SOLVE SOLVE(ASIN(COS(3*X))*(F(X)-1),X); SOLVE(5^F(X)=125,F(X)),SOLVERADCAN; [4*X^2-Y^2=12,X*Y-X=2]; SOLVE(%,[X,Y]); SOLVE(X^3+A*X+1,X); SOLVE(X^3-1); SOLVE(X^6-1); EV(X^6-1,%[1]); EXPAND(%); X^2-1; SOLVE(%,X); %TH(2),%[1];&& SPECINT ASSUME(P>0,A>0)$ /* a Laplace transform */ T^(1/2)*%E^(-A*T/4)*%E^(-P*T); SPECINT(%,T); /* a Bessel function */ T^(1/2)*%J[1](2*A^(1/2)*T^(1/2))*%E^(-P*T); SPECINT(%,T); FORGET(P>0,A>0)$&& SQFR SQFR(4*X^4+4*X^3-3*X^2-4*X-1);&& SUBSTINPART X.'DIFF(F(X),X,2); SUBSTINPART(D^2,%,2); SUBSTINPART(F1,F[1](X+1),0);&& SUBSTITUTE SUBST(A,X+Y,X+(X+Y)^2+Y); SUBST(-%I,%I,A+B*%I); SUBST(X,Y,X+Y); SUBST(X=0,DIFF(SIN(X),X)); ERRCATCH(EV(DIFF(SIN(X),X),X=0)); INTEGRATE(X^I,X),I=-1; ERRCATCH(SUBST(-1,I,INTEGRATE(X^I,X))); MATRIX([A,B],[C,D]); SUBST("[",MATRIX,%);&& SUBSTPART 1/(X^2+2); SUBSTPART(3/2,%,2,1,2); 27*Y^3+54*X*Y^2+36*X^2*Y+Y+8*X^3+X+1; SUBSTPART(FACTOR(PIECE),%,[1,2,3,5]); 1/X+Y/X-1/Z; SUBSTPART(XTHRU(PIECE),%,[2,3]); SUBSTPART("+",%,1,0); RATSIMP((K^2*X^2-1)*(COS(X)+EPS)/(3*K+N[1])/(5*K-N[2])); FACTOR(%); SUBSTPART(RATSIMP(PIECE),%,1,[1,2]); -SUBSTPART(-PIECE,%,1,1); A+B/(X*(Y+(A+B)*X)+1); SUBSTPART(MULTTHRU(PIECE),%,1,2,1);&& SUM SUM(I^2+2^I,I,0,N),SIMPSUM; SUM(3^(-I),I,1,INF),SIMPSUM; SUM(I^2,I,1,4)*SUM(1/I^2,I,1,INF),SIMPSUM; SUM(I^2,I,1,5);&& SYMMETRIC DECLARE(H,SYMMETRIC); H(X,Z,Y);&& SYNTAX MATCHFIX("{","}"); INFIX("|"); {X|X>0}; {X|X<2}; INFIX(".U.")$ INFIX(".I.")$ %TH(4).U.%TH(3); %TH(5).U.%TH(4); {1,2,3}$ {3,4,5}$ %TH(2).U.%TH(2).U.%; INFIX(".U.",100,100)$ INFIX(".I.",120,120)$ %TH(5).U.%TH(5).U.%; REMOVE(".U.",OPERATOR)$ ERRCATCH(%TH(7).U.%TH(3)); REMOVE(["{","}",".I.",".U."],OPERATOR)$&& TAYLOR TAYLOR(SQRT(1+A*X+SIN(X)),X,0,3); %^2; TAYLOR(SQRT(1+X),X,0,5); %^2; PRODUCT((X^I+1)^2.5,I,1,INF)/(X^2+1); TAYLOR(%,X,0,3),KEEPFLOAT; TAYLOR(1/LOG(1+X),X,0,3); TAYLOR(COS(X)-SEC(X),X,0,5); TAYLOR((COS(X)-SEC(X))^3,X,0,5); TAYLOR((COS(X)-SEC(X))^-3,X,0,5); TAYLOR(SQRT(1-K^2*SIN(X)^2),X,0,6); TAYLOR((1+X)^N,X,0,4); TAYLOR(SIN(X+Y),X,0,3,Y,0,3); TAYLOR(SIN(X+Y),[X,Y],0,3); TAYLOR(1/SIN(X+Y),X,0,3,Y,0,3); TAYLOR(1/SIN(X+Y),[X,Y],0,3);&& TAYTORAT TAYLOR(1+X,[X,0,3]); 1/%; TAYLOR(1+X+Y+Z,[X,0,3],[Y,1,2],[Z,2,1]); 1/%; TAYLOR(1+X+Y+Z,[X,0,3],[Y,0,3],[Z,0,3]); 1/%;&& TELLRAT 10*(1+%I)/(3^(1/3)+%I); RATDISREP(RAT(%)),ALGEBRAIC; TELLRAT(A^2+A+1); A/(SQRT(2)+SQRT(3))+1/(A*SQRT(2)-1); RATDISREP(RAT(%)),ALGEBRAIC; TELLRAT(Y^2=X^2);&& TELLSIMP MATCHDECLARE(X,FREEOF(%I))$ %IARGS:FALSE$ TELLSIMP(SIN(%I*X),%I*SINH(X)); TRIGEXPAND(SIN(X+%I*Y)); %IARGS:TRUE$ ERRCATCH(0^0); TELLSIMP(0^0,1),SIMP:FALSE; 0^0; REMRULE("^",%th(2)[1]); TELLSIMP(SIN(X)^2,1-COS(X)^2)$ (SIN(X)+1)^2; EXPAND(%); SIN(X)^2; KILL(RULES); MATCHDECLARE(A,TRUE)$ TELLSIMP(SIN(A)^2,1-COS(A)^2)$ SIN(Y)^2; KILL(RULES);&& TRIANGULARIZE MATRIX([2,1-A,-5*B],[A,B,C]); TRIANGULARIZE(%);&& TRIG SIN(%PI/12)+TAN(%PI/6); EV(%,NUMER); SIN(1); SIN(1),NUMER; BETA(1/2,2/5); EV(%,NUMER); DIFF(ATANH(SQRT(X)),X); FPPREC:25$ SIN(0.5B0); COS(X)^2-SIN(X)^2; EV(%,X:%PI/3); DIFF(%TH(2),X); INTEGRATE(%TH(3),X); EXPAND(%); TRIGEXPAND(%); TRIGREDUCE(%); SECH(X)^2*SINH(X)*TANH(X)/COTH(X)^2 + COSH(X)^2*SECH(X)^2*TANH(X)/COTH(X)^2 + SECH(X)^2*TANH(X)/COTH(X)^2; TRIGSIMP(%); EV(SIN(X),EXPONENTIALIZE); TAYLOR(SIN(X)/X,X,0,4); EV(COS(X)^2-SIN(X)^2,SIN(X)^2=1-COS(X)^2);&& TRIGEXPAND X+SIN(3*X)/SIN(X),TRIGEXPAND,EXPAND; TRIGEXPAND(SIN(10*X+Y));&& TRIGREDUCE -SIN(X)^2+3*COS(X)^2+X; EXPAND(TRIGREDUCE(%)); DECLARE(J,INTEGER,E,EVEN,O,ODD); SIN(X+(E+1/2)*%PI); SIN(X+(O+1/2)*%PI);&& UNORDER A^2+B*X; ORDERGREAT(A); A^2+B*X; %-%TH(3); UNORDER();&& XTHRU ((X+2)^20-2*Y)/(X+Y)^20+(X+Y)^-19-X/(X+Y)^20; XTHRU(%);&& ZEROEQUIV ZEROEQUIV(SIN(2*X)-2*SIN(X)*COS(X),X); ZEROEQUIV(%E^X+X,X); ZEROEQUIV(LOG(A*B)-LOG(A)-LOG(B),A);