"Stavros Macrakis" <stavros.macrakis@verizon.net> writes:
> Camm,
>
> The new Epsilon calculations look excellent.
>
> But I am puzzled by the value 1.1107651257113995E-16 (call that Q765)
> for double-float-epsilon. When running in Lisp, the correct value is in
> fact 1.1102230246251568d-16 (call that Q223). That is, 1+Q223-1 is
> non-zero.
>
> I have implemented your algorithm both in C and in Lisp. In Lisp, it
> gives the correct result (Q223). But in C, it gives Q765, UNLESS you
> don't force intermediate results to memory. But surely in Lisp, all the
> intermediate results are in fact going to memory! And the binary
> representation of Q765 looks bizarre.
>
> It is not your code that's the problem -- I tried a different algorithm
> and got the same result.
>
> Any clue what is going on here? Or am I just hallucinating?
>
> -s
>
>
>
Greetings! Beyond this problem, another user reported that the
algorithm looped forever on his Athlon XP. So I've redone the
calculation again just in the IEEE case. There is still a
computational anomaly in the double precision case, which I've
temporarily overriden to give the right answers for now. Comments
welcome!
=============================================================================
Index: num_co.c
===================================================================
RCS file: /cvsroot/gcl/gcl/o/num_co.c,v
retrieving revision 1.6
retrieving revision 1.7
diff -u -r1.6 -r1.7
--- num_co.c 17 Oct 2002 01:40:56 -0000 1.6
+++ num_co.c 18 Oct 2002 15:00:56 -0000 1.7
@@ -1203,6 +1203,63 @@
void _assure_in_memory (void *p);
#define FMEM(f) _assure_in_memory(&f)
+
+#ifdef IEEEFLOAT
+/* from ieee754.h */
+
+typedef union {
+ float f;
+
+ /* This is the IEEE 754 single-precision format. */
+ struct float_bits
+ {
+#ifndef LITTLE_END
+ unsigned int negative:1;
+ unsigned int exponent:8;
+ unsigned int mantissa:23;
+#else /* Big endian. */
+ unsigned int mantissa:23;
+ unsigned int exponent:8;
+ unsigned int negative:1;
+#endif /* Little endian. */
+ } ieee;
+} IEEE_float;
+
+typedef union {
+
+ double d;
+
+ /* This is the IEEE 754 double-precision format. */
+ struct double_bits
+ {
+#ifndef LITTLE_END
+ unsigned int negative:1;
+ unsigned int exponent:11;
+ /* Together these comprise the mantissa. */
+ unsigned int mantissa0:20;
+ unsigned int mantissa1:32;
+#else /* Big endian. */
+ /* # if __FLOAT_WORD_ORDER == BIG_ENDIAN */
+ /* unsigned int mantissa0:20; */
+ /* unsigned int exponent:11; */
+ /* unsigned int negative:1; */
+ /* unsigned int mantissa1:32; */
+ /* # else */
+ /* Together these comprise the mantissa. */
+ unsigned int mantissa1:32;
+ unsigned int mantissa0:20;
+ unsigned int exponent:11;
+ unsigned int negative:1;
+ /* # endif */
+#endif /* Little endian. */
+ } ieee;
+} IEEE_double;
+
+
+#endif
+
+
+
void
init_num_co(void)
{
@@ -1289,33 +1346,6 @@
#endif
#endif
-#ifdef MV
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-#endif
-
#if defined(S3000) && ~defined(DBL_MAX_10_EXP)
l[0] = 0x7fffffff;
l[1] = 0xffffffff;
@@ -1351,37 +1381,50 @@
biggest_float = FLT_MAX;
#endif
-
-/* We want the smallest number not satisfying something,
- and so we go quickly down, and then back up. We have
- to use a function call for test, since in line code may keep
- too much precision, while the usual lisp eql,is not
- in line.
- We use SMALL as a multiple to come back up by.
- We use FMEM(double_negative_epsilon)
- to force the quantity into memory by taking its address
- and then passing it to a function.
-*/
-
+
#ifdef IEEEFLOAT
{
- double div,td;
- float ts;
- for (float_epsilon=1.0,div=0.5;(float)div!=1.0;div=1.0-(0.5*(1.0-div)))
- for (ts=float_epsilon;FMEM(ts),!SF_EQL((float)(1.0+ts),(float)1.0);float_epsilon=ts,ts*=div);
-
- for (float_negative_epsilon=1.0,div=0.5;(float)div!=1.0;div=1.0-(0.5*(1.0-div)))
- for (ts=float_negative_epsilon;FMEM(ts),!SF_EQL((float)(1.0-ts),(float)1.0);float_negative_epsilon=ts,ts*=div);
-
- for (double_epsilon=1.0,div=0.5;(double)div!=1.0;div=1.0-(0.5*(1.0-div)))
- for (td=double_epsilon;FMEM(td),!LF_EQL((double)(1.0+td),(double)1.0);double_epsilon=td,td*=div);
+ IEEE_float ief;
+ IEEE_double ied;
- for (double_negative_epsilon=1.0,div=0.5;(double)div!=1.0;div=1.0-(0.5*(1.0-div)))
- for (td=double_negative_epsilon;FMEM(td),!LF_EQL((double)(1.0-td),(double)1.0);double_negative_epsilon=td,td*=div);
+ if (sizeof(ief)!=sizeof(ief.f))
+ FEerror("Bad ieee float definition\n");
+ if (sizeof(ied)!=sizeof(ied.d))
+ FEerror("Bad ieee float definition\n");
+
+ for (float_epsilon=ief.f=1.0,ief.ieee.mantissa=1;
+ FMEM(ief.f),!SF_EQL((float)(1.0+ief.f),(float)1.0);
+ float_epsilon=ief.f,ief.ieee.exponent--);
+
+ for (float_negative_epsilon=ief.f=1.0,ief.ieee.mantissa=1;
+ FMEM(ief.f),!SF_EQL((float)(1.0-ief.f),(float)1.0);
+ float_negative_epsilon=ief.f,ief.ieee.exponent--);
+
+ for (double_epsilon=ied.d=1.0,ied.ieee.mantissa1=1;
+ FMEM(ied.d),!LF_EQL((1.0+ied.d),1.0);
+ double_epsilon=ied.d,ied.ieee.exponent--);
+ /* FIXME double calculations end one iteration too early */
+ double_epsilon=ied.d;
+
+ for (double_negative_epsilon=ied.d=1.0,ied.ieee.mantissa1=1;
+ FMEM(ied.d),!LF_EQL((1.0-ied.d),1.0);
+ double_negative_epsilon=ied.d,ied.ieee.exponent--);
+ double_negative_epsilon=ied.d;
}
#else
+ /* We want the smallest number not satisfying something,
+ and so we go quickly down, and then back up. We have
+ to use a function call for test, since in line code may keep
+ too much precision, while the usual lisp eql,is not
+ in line.
+ We use SMALL as a multiple to come back up by.
+ We use FMEM(double_negative_epsilon)
+ to force the quantity into memory by taking its address
+ and then passing it to a function.
+ */
+
#define SMALL 1.05
for (float_epsilon = 1.0;
FMEM(float_epsilon),!SF_EQL((float)(1.0 + float_epsilon),(float)1.0);
=============================================================================
--
Camm Maguire camm@enhanced.com
==========================================================================
"The earth is but one country, and mankind its citizens." -- Baha'u'llah