New user question



"Stavros Macrakis" <stavros.macrakis@verizon.net> writes:

> > f1: (Rb/Bmin) * B * (B - Bmin) * (1 - B/Bmax) - A * B * F = 0;
> > f2: (Rf/Fmin) * F * (F - Fmin) * (1 - F/Fmax) - A * B * F = 0;
> > res: solve ([f1, f2], [B, F]);
> >
> > Now if I input just that, and try to solve it symbolically,
> > Maxima hangs.
> 
> Your system reduces to something of the form:
> 
>   q1: b2 * B^2 + b1 * B + b0 + bf * F = 0
> 
>   q2: f2 * F^2 + f1 * F + f0 + fb * B = 0

Actually, the original system can be further reduced to a system of
the form

    x^2+y=a

    x+y^2=b

See below for the corresponding commented Maxima transcript.  Clearly,
this is equivalent to the system

    y=a-x^2

    x^4-2*a*x^2+x+a^2-b=0


(C1) f1: (Rb/Bmin) * B * (B - Bmin) * (1 - B/Bmax) - A * B * F = 0$
(C2) f2: (Rf/Fmin) * F * (F - Fmin) * (1 - F/Fmax) - A * B * F = 0$
(C3) eqs:expand([f1/(A*B),f2/(A*F)]);
	    2
	   B  Rb       B Rb     B Rb    Rb
(D3) [- ----------- + ------ + ------ - -- - F = 0, 
	A Bmax Bmin   A Bmin   A Bmax   A

					2
				       F  Rf	   F Rf	    F Rf    Rf
				  - ----------- + ------ + ------ - -- - B = 0]
				    A Fmax Fmin	  A Fmin   A Fmax   A

/* Complete the squares */

(C4) eqs:expand(sublis([B=B1+(Bmin+Bmax)/2,F=F1+(Fmin+Fmax)/2],%));
				2
      Bmin Rb	 Bmax Rb      B1  Rb	  Rb    Fmin   Fmax
(D4) [-------- + -------- - ----------- - --- - ---- - ---- - F1 = 0, 
      4 A Bmax	 4 A Bmin   A Bmax Bmin	  2 A	 2      2

					  2
		Fmin Rf	   Fmax Rf      F1  Rf	    Rf	  Bmin	 Bmax
		-------- + -------- - ----------- - --- - ---- - ---- - B1 = 0]
		4 A Fmax   4 A Fmin   A Fmax Fmin   2 A	   2	  2

/* Perform another substitution... */

(C5) eqs:sublis([B1=B2*p,F1=F2*q],%);
	   2  2
	 B2  p  Rb    Bmin Rb	 Bmax Rb    Rb		 Fmin   Fmax
(D5) [- ----------- + -------- + -------- - --- - F2 q - ---- - ---- = 0, 
	A Bmax Bmin   4 A Bmax	 4 A Bmin   2 A		  2	 2

		 2  2
	       F2  q  Rf    Fmin Rf    Fmax Rf	  Rf	       Bmin   Bmax
	    - ----------- + -------- + -------- - --- - B2 p - ---- - ---- = 0]
	      A Fmax Fmin   4 A Fmax   4 A Fmin	  2 A	        2      2
(C6) eqs:expand([first(%)/q,second(%)/p]);
	    2  2
	  B2  p  Rb	 Bmin Rb      Bmax Rb	   Rb	  Fmin	 Fmax
(D6) [- ------------- + ---------- + ---------- - ----- - ---- - ---- - F2 = 
	A Bmax Bmin q   4 A Bmax q   4 A Bmin q	  2 A q	  2 q	 2 q

	    2  2
	  F2  q  Rf	 Fmin Rf      Fmax Rf	   Rf	  Bmin	 Bmax
   0, - ------------- + ---------- + ---------- - ----- - ---- - ---- - B2 = 0]
	A Fmax Fmin p   4 A Fmax p   4 A Fmin p	  2 A p	  2 p	 2 p

/* ... and determine p and q such that the coefficients of B2^2 and
   F2^2 become -1 */

(C7) solve([ratcoef(lhs(first(%)),B2,2)=-1,ratcoef(lhs(second(%)),F2,2)=-1],[p,q]);
				  2/3	  2/3	  1/3	  1/3
	   (SQRT(3) %I - 1) A Bmax    Bmin    Fmax    Fmin
(D7) [[p = --------------------------------------------------, 
				 2/3   1/3
			     2 Rb    Rf

			     1/3     1/3     2/3     2/3
      (SQRT(3) %I + 1) A Bmax    Bmin    Fmax    Fmin
q = - --------------------------------------------------], 
			    1/3	  2/3
			2 Rb    Rf

			      2/3     2/3     1/3     1/3
       (SQRT(3) %I + 1) A Bmax	  Bmin	  Fmax	  Fmin
[p = - --------------------------------------------------, 
			     2/3   1/3
			 2 Rb    Rf

			   1/3	   1/3	   2/3	   2/3
    (SQRT(3) %I - 1) A Bmax    Bmin    Fmax    Fmin
q = --------------------------------------------------], 
			  1/3   2/3
		      2 Rb    Rf

	   2/3	   2/3	   1/3	   1/3
     A Bmax    Bmin    Fmax    Fmin
[p = ---------------------------------, 
		  2/3   1/3
		Rb    Rf

	  1/3	  1/3	  2/3	  2/3
    A Bmax    Bmin    Fmax    Fmin
q = ---------------------------------], [p = 0, q = 0]]
		 1/3   2/3
	       Rb    Rf

/* Choose the non-trivial real solution */

(C8) sol:third(%);
		2/3     2/3     1/3     1/3
	  A Bmax    Bmin    Fmax    Fmin
(D8) [p = ---------------------------------, 
		       2/3   1/3
		     Rb	   Rf

						   1/3	   1/3	   2/3	   2/3
					     A Bmax    Bmin    Fmax    Fmin
					 q = ---------------------------------]
							  1/3   2/3
							Rb    Rf
/* Substitute back */

(C9) eqs:expand(sublis(%,eqs));
	      2/3   4/3	  2/3			   4/3	 2/3
	  Bmin	  Rb    Rf			 Rb    Rf
(D9) [---------------------------- - ------------------------------------
	 2     4/3     2/3     2/3      2     1/3     1/3     2/3     2/3
      4 A  Bmax	   Fmax	   Fmin	     2 A  Bmax	  Bmin	  Fmax	  Fmin

	   2/3	 4/3   2/3		  1/3   1/3   2/3
       Bmax    Rb    Rf		      Fmin    Rb    Rf
 + ---------------------------- - ---------------------------
      2	    4/3	    2/3	    2/3		  1/3	  1/3	  2/3
   4 A  Bmin    Fmax    Fmin	  2 A Bmax    Bmin    Fmax

	   1/3	 1/3   2/3
       Fmax    Rb    Rf		        2
 - --------------------------- - F2 - B2  = 0, 
	   1/3	   1/3	   2/3
   2 A Bmax    Bmin    Fmin

	2/3   2/3   4/3			     2/3   4/3
    Fmin    Rb	  Rf			   Rb    Rf
---------------------------- - ------------------------------------
   2	 2/3	 2/3	 4/3	  2     2/3     2/3     1/3     1/3
4 A  Bmax    Bmin    Fmax      2 A  Bmax    Bmin    Fmax    Fmin

	   2/3	 2/3   4/3		  1/3   2/3   1/3
       Fmax    Rb    Rf		      Bmin    Rb    Rf
 + ---------------------------- - ---------------------------
      2	    2/3	    2/3	    4/3		  2/3	  1/3	  1/3
   4 A  Bmax    Bmin    Fmin	  2 A Bmax    Fmax    Fmin

	   1/3	 2/3   1/3
       Bmax    Rb    Rf		   2
 - --------------------------- - F2  - B2 = 0]
	   2/3	   1/3	   1/3
   2 A Bmin    Fmax    Fmin
(C10) 

Wolfgang