Integration bug



I'm sorry 
Integrand is  t^2/sqrt(1-t^2)/(1+b^2*t^2)
and result given by mathematica is %pi/b^2*(1-1/sqrt(1+b^2));
For Integrand: t^2*sqrt(1-t^2)/(1+b^2*t^2 the maxima result is wrong as well
Result is pi/2 in this case
rgds,
v
On Wednesday 11 June 2003 00:20, Stavros Macrakis wrote:
>Valery,
>
>Though defint's result is not correct, I don't think your formula is
>correct, either.  (I am using prebuilt 5.9.0, not CVS.)
>
>Consider:
>
>  integrand: t^2*sqrt(1-t^2)/(1+b^2*t^2);
>  vp_int: %pi/b^2*(1-1/sqrt(1+b^2));
>  defint: integrate(integrand,t,-1,1);
>
>  table:
>makelist(float([romberg(''integrand,t,-1,1),''vp_int,''defint]),
>           b,[0.001,0.234,0.753,1.0])$
>  fpprec:6$
>  apply(matrix,cons(["b","Romberg","vp_int","Defint"],table));
>
>         [   b     Romberg      vp_int      Defint    ]
>         [                                            ]
>         [ 0.001    0.3927      1.5708    3.14159E+12 ]
>         [                                            ]
>         [ 0.234    0.3823      1.5091      1076.51   ]
>         [                                            ]
>         [ 0.753    0.3098     1.11451      12.542    ]
>         [                                            ]
>         [  1.0     0.2695      0.9202      4.71239   ]
>         [                                            ]
>         [ 100.0  1.53968E-4  3.11018E-4  1.57111E-4  ]
>
>For that matter, look at the case b=0 analytically:
>
>  integrandb0: subst(0,b,integrand) => t^2 sqrt(1-t^2)
>  indefintb0: integrate(integrandb0,t)
>    Verify: ratsimp(diff(indefintb0,t)) == integrandb0
>  subst(1,t,indefintb0)-subst(-1,t,indefintb0) => %pi/8
>  integrate(integrandb0,t,-1,1) => %pi/8
>
>and numerically:
>
>  romberg(''integrandb0,t,-1,1) => 0.392693 ~~ %pi/8
>
>But
>
>  limit(vp_int,b,0) => %pi/2
>
>Maxima's indefinite integral is not correct, either:
>
>  subst([t=0,b=1],integrand) => 0
>  subst([t=0,b=1],diff(integrate(integrand,t),t)) => 2
>
>_______________________________________________
>Maxima mailing list
>Maxima@www.math.utexas.edu
>http://www.math.utexas.edu/mailman/listinfo/maxima