adding inequalities



Many thanks, now it works fine:

(C4) kill(all);
(D0)                                 DONE
(C1) assume_pos;
(D1)                                 FALSE
(C2) assume_pos:true;
(D2)                                 TRUE
(C3) demo(ineq);

batching /usr/local/maxima-5.9.0/share/maxima/5.9.0/share/simplification/ineq.dem
 At the _ prompt, type ';' followed by enter to get next demo
(C4)                              LOAD('ineq)
g + e partitions SUM
g + e partitions SUM
g + e partitions SUM
g + e partitions SUM
g + e partitions SUM
g + e partitions SUM
g + e partitions SUM
g + e partitions SUM
(D4) /usr/local/maxima-5.9.0/share/maxima/5.9.0/share/simplification/ineq.mac

_
(C5)                                a >= 4
(D5)                                a >= 4

_;
(C6)                              % + (b > c)
(D6)                             b + a > c + 4

_;
(C7)                               7 (x < y)
(D7)                               7 x < 7 y

_;
(C8)                            - 2 (x >= 3 z)
(D8)                            - 2 x <= - 6 z

_;
                              2         1
(C9)                        (a  + 1) (------ <= 1)
                                       2
                                      a  + 1
                                        2
(D9)                              1 <= a  + 1

_;
(C10)                              x (2 < 3)
(D10)                              2 x < 3 x

_;
(C11)                               a >= b
(D11)                               a >= b

_;
(C12)                                % + 3
(D12)                           a + 3 >= b + 3

_;
(C13)                                % - 3
(D13)                               a >= b

_;
(C14)                             a >= c - b
(D14)                             a >= c - b

_;
(C15)                                % + b
(D15)                             b + a >= c

_;
(C16)                                % - c
(D16)                          - c + b + a >= 0

_;
(C17)                                 - %
(D17)                           c - b - a <= 0

_;
                                      2
(C18)                          (z - 1)  > - 2 z
                                      2
(D18)                          (z - 1)  > - 2 z

_;
(C19)                           2 z + EXPAND(%)
                                   2
(D19)                             z  + 1 > 0

_;
(C20)                             EV(%, PRED)
(D20)                                TRUE

_;
(C21) 


I will try to apply this possibility,
Thank you again,
--
Alexander