clisp and gclisp give different answer for the same



Hi

I ran the  maxima versions(5.9.0) compiled with clisp(2.31) and 
gclisp(2.5.0) for exact same problems. The build_info for both is included.
OS ENVIRONMENT: CYGWIN under WINXP
CYGWIN { 2003/08/31 12:05:44 Starting cygwin install, version 2.340.2.5 }

Here is what I am getting as output:


MAXIMA version compiled with the clisp  runs most of the problems but 
fails to produce results for

1. problems involving differentiation of functions
2. 2nd order non-homogeneous ordinary differential equations. It works 
ok for 2nd order homogenous ordinary equations.

Other than this everything else seems to work including plot2d and 
plot3d functions.

I am including the screen output from both runs :


CLISP run


jalam@JOVE4 ~
$ maxima
  i i i i i i i       ooooo    o        ooooooo   ooooo   ooooo
  I I I I I I I      8     8   8           8     8     o  8    8
  I  \ `+' /  I      8         8           8     8        8    8
   \  `-+-'  /       8         8           8      ooooo   8oooo
    `-__|__-'        8         8           8           8  8
        |            8     o   8           8     o     8  8
  ------+------       ooooo    8oooooo  ooo8ooo   ooooo   8

Copyright (c) Bruno Haible, Michael Stoll 1992, 1993
Copyright (c) Bruno Haible, Marcus Daniels 1994-1997
Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998
Copyright (c) Bruno Haible, Sam Steingold 1999-2003

Maxima 5.9.0 http://maxima.sourceforge.net
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
;; Loading file /usr/local/share/maxima/5.9.0/share/maxima-init.lisp ...
;; Loaded file /usr/local/share/maxima/5.9.0/share/maxima-init.lisp
(C1) build_info;
(D1)                              BUILD_INFO
(C2) build_info();

Maxima version: 5.9.0
Maxima build date: 6:33 9/12/2003
host type: i686-pc-cygwin
lisp-implementation-type: CLISP
lisp-implementation-version: 2.31 (released 2003-09-01) (built 
3272325060) (memo
ry 3272351601)

(D2)
(C3) 2 + 2;
(D3)                                   4
(C4) integrate(x^2,x);
                                       3
                                      x
(D4)                                  --
                                      3
(C5) integrate(x^3,x,0,1);
                                       1
(D5)                                   -
                                       4
(C6) 'diff(x,t,2)=0;
                                     2
                                    d x
(D6)                                --- = 0
                                      2
                                    dt
(C7) ode2(d6,x,t);
(D7)                            x = %K2 t + %K1
(C8) 'diff(x,t,2) + a*'diff(x,t) + b*x=0;
                              2
                             d x     dx
(D8)                         --- + a -- + b x = 0
                               2     dt
                             dt
(C9) ode2(d8,x,t);
           2
Is  4 b - a   positive, negative, or zero?

positive;
              a t
            - ---                      2                           2
               2           SQRT(4 b - a ) t            SQRT(4 b - a ) t
(D9)  x = %E      (%K1 SIN(----------------) + %K2 COS(----------------))
                                  2                           2
(C10) solve(x^2 -3*x +2=0,x);
(D10)                           [x = 1, x = 2]
(C11) diff(x,x);
(D11)                                  1
(C12) diff(x^2,x);
                                    d    2
(D12)                               -- (x )
                                    dx
(C13) 'diff(x,t,2) +a*'diff(x,t) + b*x =d*sin(e*t);
                          2
                         d x     dx
(D13)                    --- + a -- + b x = d SIN(e t)
                           2     dt
                         dt
(C14) ode2(d13,x,t);
           2
Is  4 b - a   positive, negative, or zero?

positive;
              a t
            - ---                    2
               2         SQRT(4 b - a ) t
(D14) x = %E      (d SIN(----------------)
                                2

 /                          2                       2
 [      2 e t + SQRT(4 b - a ) t        SQRT(4 b - a ) t - 2 e t
 I (SIN(------------------------) - SIN(------------------------))
 ]                 2                               2
 /

                                   a t
                    2            - ---                 2
        SQRT(4 b - a ) t   d        2      SQRT(4 b - a ) t
/(2 COS(----------------) (-- (%E      SIN(----------------)))
               2           dt                     2

                                    a t
                     2            - ---                 2
         SQRT(4 b - a ) t   d        2      SQRT(4 b - a ) t
 - 2 SIN(----------------) (-- (%E      COS(----------------)))) dt
                2           dt                     2

                     2     /                          2
         SQRT(4 b - a ) t  [      2 e t + SQRT(4 b - a ) t
 + d COS(----------------) I (COS(------------------------)
                2          ]                 2
                           /

                   2                                 2
       SQRT(4 b - a ) t - 2 e t          SQRT(4 b - a ) t
 - COS(------------------------))/(2 COS(----------------)
                  2                             2

          a t
        - ---                 2                           2
  d        2      SQRT(4 b - a ) t            SQRT(4 b - a ) t
 (-- (%E      SIN(----------------))) - 2 SIN(----------------)
  dt                     2                           2

          a t
        - ---                 2
  d        2      SQRT(4 b - a ) t
 (-- (%E      COS(----------------)))) dt)
  dt                     2

(C15)
     - ---                      2                           2
        2           SQRT(4 b - a ) t            SQRT(4 b - a ) t
 + %E      (%K1 SIN(----------------) + %K2 COS(----------------))
                           2                           2
(C15)



GCLISP RUN for the sake of comparison


jalam@JOVE4 ~
jalam@JOVE4 /tmp/maxima/lib/maxima/5.9.0/binary-gcl
$ ./maxima -eval "(user::run)"
GCL (GNU Common Lisp)  Version(2.5.0) Thu Jan 30 02:37:51 CST 2003
Licensed under GNU Library General Public License
Contains Enhancements by W. Schelter

Use (help) to get some basic information on how to use GCL.
Maxima 5.9.0 http://maxima.sourceforge.net
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(C1) build_info;

(D1)                              BUILD_INFO
(C2) build_info();


Maxima version: 5.9.0
Maxima build date: 19:10 2/9/2003
host type: i686-pc-mingw32
lisp-implementation-type: Kyoto Common Lisp
lisp-implementation-version: GCL-2-5.0

(D2)
(C3) 2 + 2;

(D3)                                   4
(C4) integrate (x^2,x);

                                       3
                                      x
(D4)                                  --
                                      3
(C5) integrate(x^3,x,0,1);

                                       1
(D5)                                   -
                                       4
(C6) 'diff(x,t,2)=0;

                                     2
                                    d x
(D6)                                --- = 0
                                      2
                                    dt
(C7) ode2(d6,x,t);

(D7)                            x = %K2 t + %K1
(C8) 'diff(x,t,2) + a*'diff(x,t) + b*x=0;

                              2
                             d x     dx
(D8)                         --- + a -- + b x = 0
                               2     dt
                             dt
(C9) ode2(d8,x,t);

           2
Is  4 b - a   positive, negative, or zero?

positive;
              a t
            - ---                      2                           2
               2           SQRT(4 b - a ) t            SQRT(4 b - a ) t
(D9)  x = %E      (%K1 SIN(----------------) + %K2 COS(----------------))
                                  2                           2
(C10) solve(x^2 - 3*x +2=0,x);

(D10)                           [x = 1, x = 2]
(C11) diff(x,x);

(D11)                                  1
(C12) diff(x^2,x);

(D12)                                 2 x
(C13) 'diff(x,t,2) + a*'diff(x,t) + b*x = d*sin(e*t);

                          2
                         d x     dx
(D13)                    --- + a -- + b x = d SIN(e t)
                           2     dt
                         dt
(C14) ode2(d13,x,t);

           2
Is  4 b - a   positive, negative, or zero?

positive;
              a t
            - ---                      2                           2
               2           SQRT(4 b - a ) t            SQRT(4 b - a ) t
(D14) x = %E      (%K1 SIN(----------------) + %K2 COS(----------------))
                                  2                           2

                                             2
                                         (d e  - b d) SIN(e t) + a d e 
COS(e t)
                                       - 
--------------------------------------
                                                 4     2         2    2
                                                e  + (a  - 2 b) e  + b
(C15)


This shows that it could be a very small problem in clisp compilation of 
maxima on winxp under cygwin. Any suggestion will be very helpful. Thanks

regards javed












James Amundson wrote:

>On Fri, 2003-09-19 at 01:31, Javed Alam wrote:
>  
>
>>I tried to solve this 2nd order differential equation 
>>and end up with
>>a wrong answer because if I try doing the same with maxima compiled with 
>>GCL I get the
>>right answer. Did some body else had the same problem?
>>    
>>
>
><snip>
>
>  
>
>>(C1) 'diff(x,t,2) + a*x = b*sin(c*t);
>>                             2
>>                            d x
>>(D1)                        --- + a x = b SIN(c t)
>>                              2
>>                            dt
>>(C2) ode2(d1,x,t);
>>Is  a  positive, negative, or zero?
>>
>>positive;
>>                          /
>>                          [
>>(D2) x = b SIN(SQRT(a) t) I (SIN(c t + SQRT(a) t) + SIN(c t - SQRT(a) t))
>>                          ]
>>1. Break [1]>
>>
>>                    d
>>/(2 COS(SQRT(a) t) (-- (SIN(SQRT(a) t)))
>>                    dt
>>
>>                     d
>> - 2 SIN(SQRT(a) t) (-- (COS(SQRT(a) t)))) dt
>>                     dt
>>
>>                    /
>>                    [
>> + b COS(SQRT(a) t) I (COS(c t + SQRT(a) t) - COS(c t - SQRT(a) t))
>>                    ]
>>                    /
>>
>>                    d
>>/(2 COS(SQRT(a) t) (-- (SIN(SQRT(a) t)))
>>                    dt
>>
>>                     d
>> - 2 SIN(SQRT(a) t) (-- (COS(SQRT(a) t)))) dt + %K1 SIN(SQRT(a) t)
>>                     dt
>>
>> + %K2 COS(SQRT(a) t)
>>    
>>
>
>I was not able to reproduce this result with Maxima 5.9.0+Clisp 2.29 or
>the current Maxima cvs+Clisp 2.31. Looking at it, I don't see how you
>could possibly get "1. Break [1]>" In the middle of a displayed
>equation. Do you know what happened there? It would be helpful for you
>to send us the output of "build_info();"
>
>--Jim
>
>
>
>  
>


-- 

*Javed Alam, *Ph.D.

*Professor*

*Civil/Environmental/Chemical Engineering Department*

Youngstown State University

Youngstown, Ohio 44555

Phone 330-941-3029

Fax     330-941-3265

e-mail jalam@cc.ysu.edu <mailto:jalam@cc.ysu.edu>;

web: http://www.eng.ysu.edu/~jalam/ <http://www.eng.ysu.edu/%7Ejalam/>;

======================================================

"Knowledge will forever govern ignorance, and a people who mean to be 
their own governors, must arm themselves with the power knowledge gives. 
A popular government without popular information or the means of 
acquiring it, is but a prologue to a farce or a tragedy or perhaps both."
  - James Madison /(Fourth President of the United States)/ 
<http://opengov1.media.mit.edu/>;

"Facts are stupid things..."
  - Ronald Reagan /(40th President of the United States)/ 
<http://opengov1.media.mit.edu/>;

========================================================