simplification?



>> I would like to simplify some expressions involving Bessel 
>> functions using recurrences relationships like
>> 
>>   bessel_j(nu-1,z)+bessel_j(nu+1,z) = (2*nu/z) * bessel_j(nu,z)
>>   bessel_y(nu-1,z)+bessel_y(nu+1,z) = (2*nu/z) * bessel_y(nu,z)
>
> Could you give some examples of the expressions you're starting with and
> how you'd like to use these relations to simplify them?

After substituting a solution into a differential equation I have the 
following expression that should equal zero.

                       2                   2                     2
                   1  x                9  x                  1  x
(D6) (((BESSEL_J(- -, --) + BESSEL_J(- -, --)) %C + BESSEL_J(-, --)
                   4  2                4  2                  4  2

                  2                         2                        2
              7  x     2                5  x                     3  x
 + BESSEL_J(- -, --)) x  + 5 BESSEL_J(- -, --) %C + 3 BESSEL_J(- -, --))
              4  2                      4  2                     4  2

                 2                    2
             1  x                 1  x
/(BESSEL_J(- -, --) %C + BESSEL_J(-, --))
             4  2                 4  2


Using the first relationship twice, all the terms in numerator cancel.