hi Dick
Yha,this is my lack of explanation.
If G is Lie group,an element of direct product G X G
is represented by like ,[matrix([a0,a1],[a2,a3]),matrix([b1,b2],[b3,b4])].
But it's trivial,without using CAS.
if g is Lie algebra of G, my diad is direct sum and Lie algera of G X G.
So matrix([a0,a1],[a2,a3])is an element of Lie Algebra g,
matrix([b1,b2],[b3,b4]) too.
That is more useful,I think.
Gosei Furuya
> Gosie -
> Thanks for your reply. Unfortunately, this is not the direct
> product.
> Dick Fell
> go_furuya@infoseek.jp wrote:
>
> hi
> That is posiible.
> for example
> (C1) load(diag);
> (D1) /usr/local/share/maxima/5.9.0/share/contrib/diag.mac
> (C2) diag([matrix([a0,a1],[a2,a3]),matrix([b1,b2],[b3,b4])]);
>
> [ a0 A1 0 0 ]
> [ ]
> [ A2 A3 0 0 ]
> (D2) [ ]
> [ 0 0 B1 B2 ]
> [ ]
> [ 0 0 b3 b4 ]
> diag(x),x is list of numbers,or list of matrix.
>
> Gosei Furuya
>
>
>
>
> Is there a maxima share package that computes the direct product of
> matrices? (I can not find any in my maxima).
> Thanks,
> Dick Fell
>
> --
> Richard N. Fell
> Martin Fisher School of Physics
> Brandeis University
> Waltham, Ma 02454
> fell@brandeis.edu
>
>
> _______________________________________________
> Maxima mailing list
> Maxima@www.math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>
>
>
>
>
>
>
>
> ------------------------------------------------------------------------
> $B%$%a%A%'%s$G$9!#<B$O$A$g$C$T$j%I%-%I%-$G$9!#(B by infoseek
> http://ap.infoseek.co.jp/gr9.html
>
>
>
>
>
>
> --
> Richard N. Fell
> Martin Fisher School of Physics
> Brandeis University
> Waltham, Ma 02454
> fell@brandeis.edu
>
>
>
>
> _______________________________________________
> Maxima mailing list
> Maxima@www.math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>
>
------------------------------------------------------------------------
$B%$%a%A%'%s$G$9!#<B$O$A$g$C$T$j%I%-%I%-$G$9!#(B by infoseek
http://ap.infoseek.co.jp/gr9.html