Re: Re: [Maxima] direct product



hi Dick

Yha,this is my lack of explanation.
If G is Lie group,an element of direct product G X G 
is represented by like ,[matrix([a0,a1],[a2,a3]),matrix([b1,b2],[b3,b4])].
But it's trivial,without using CAS.
if g is Lie algebra of G, my diad is direct sum and Lie algera of G X G.
So matrix([a0,a1],[a2,a3])is an element of Lie Algebra g,
matrix([b1,b2],[b3,b4]) too.
That is more useful,I think.

Gosei Furuya


> Gosie -
>     Thanks for your reply. Unfortunately, this is not the direct
> product. 
> Dick Fell
> go_furuya@infoseek.jp wrote:
> 
>   hi
> That is posiible.
> for example
> (C1) load(diag);
> (D1)         /usr/local/share/maxima/5.9.0/share/contrib/diag.mac
> (C2) diag([matrix([a0,a1],[a2,a3]),matrix([b1,b2],[b3,b4])]);
> 
>                               [ a0  A1  0   0  ]
>                               [                ]
>                               [ A2  A3  0   0  ]
> (D2)                          [                ]
>                               [ 0   0   B1  B2 ]
>                               [                ]
>                               [ 0   0   b3  b4 ]
> diag(x),x is list of numbers,or list of matrix.
> 
> Gosei Furuya
> 
> 
>   
>   
>     Is there a maxima  share package that computes the direct product of 
> matrices? (I can not find any in my maxima).
> Thanks,
> Dick Fell
> 
> -- 
> Richard N. Fell
> Martin Fisher School of Physics
> Brandeis University
> Waltham, Ma 02454
> fell@brandeis.edu
> 
> 
> _______________________________________________
> Maxima mailing list
> Maxima@www.math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
> 
> 
>     
>   
>   
> 
> 
>  
> ------------------------------------------------------------------------
> $B%$%a%A%'%s$G$9!#<B$O$A$g$C$T$j%I%-%I%-$G$9!#(B by infoseek
> http://ap.infoseek.co.jp/gr9.html
> 
> 
>   
> 
> 
> 
> -- 
> Richard N. Fell
> Martin Fisher School of Physics
> Brandeis University
> Waltham, Ma 02454
> fell@brandeis.edu
> 
> 
> 
> 
> _______________________________________________
> Maxima mailing list
> Maxima@www.math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
> 
> 



 
------------------------------------------------------------------------
$B%$%a%A%'%s$G$9!#<B$O$A$g$C$T$j%I%-%I%-$G$9!#(B by infoseek
http://ap.infoseek.co.jp/gr9.html