new cartan package



Hi all
if you will use differential forms,Iam testing new cartan package
now,so send you it. this is rewrited version of the cartan.lisp.
please tell me.

for example orthogonal basis [Dx,Dy,Dz]
scalar a <---> a
vector v=(a,b,c)<---> 1form U=a*Dx+b*Dy+c*Dz
|(a,b,c)|^2 <---> (a*Dx+b*Dy+c*Dz)&(a*Dx+b*Dy+c*Dz) (& is clifford product)
(a,b,c).(f,g,h)<---> 1/2((a*Dx+b*Dy+c*Dz)&(f*Dx+g*Dy+h*Dz)+
(f*Dx+g*Dy+h*Dz)&(a*Dx+b*Dy+c*Dz))
(a,b,c)X(f,g,h)<--->h_st((a*Dx+b*Dy+c*Dz)@(f*Dx+g*Dy+h*Dz))
or -J((a*Dx+b*Dy+c*Dz)@(f*Dx+g*Dy+h*Dz))
grad(a) <---> D(a)
rot(V) <---> h_st(D(U)) or nest2([h_st,D],U)
div(V) <---> h_st(D(h_st(U))) or nest2([h_st,D,h_st],U)
laplacian(a) <---> D(h_st(D(a))) or nest2([D,h_st,D],a)
many equations <---> D(D(...))=0 ,poincare's lennma
almost every thing <--- differntial form calculation with hodge star
operator h_st(or pseudo scalar J in clifford algebra)

Gosei Furuya