(%i1) taylor(cos(x),x,0,2);
(%o1) 1-x^2/2+...
(%i2) taylor(log(x),x,1,3);
(%o2) x-1-(x-1)^2/2+(x-1)^3/3+...
For more information, use the 'describe' function
(%i3) describe(taylor);
0: DEFTAYLOR :(maxima.info)Definitions for Series.
1: TAYLOR :Definitions for Series.
2: TAYLOR_LOGEXPAND :Definitions for Series.
3: TAYLOR_ORDER_COEFFICIENTS :Definitions for Series.
4: TAYLOR_SIMPLIFIER :Definitions for Series.
5: TAYLOR_TRUNCATE_POLYNOMIALS :Definitions for Series.
6: TAYLORDEPTH :Definitions for Series.
7: TAYLORINFO :Definitions for Series.
8: TAYLORP :Definitions for Series.
Enter space-separated numbers, ALL or NONE:
Still waiting: 1;
Info from file C:/PROGRA~1/MAXIMA~1.1/info/maxima.info:
- Function: TAYLOR (exp, var, pt, pow)
expands the expression exp in a truncated Taylor series (or
Laurent series, if required) in the variable var around the point
pt. The terms through (var-pt)**pow are generated. If exp is of ...
Barton
-----maxima-admin@math.utexas.edu wrote: -----
>Hi,
>
>could maxima calculate "Taylor-Polynoms"?
>regards
>Andreas
>
>_______________________________________________
>Maxima mailing list
>Maxima@www.math.utexas.edu
>http://www.math.utexas.edu/mailman/listinfo/maxim
>a
>