Is this a standard convention in Maxima?



Is it standard for Maxima to redefine the form of things internally
when a "'" is used to not evaluate?  Here's what I got caught on - it
would be nice to know about this convention if it is indeed general:

Maxima 5.9.1.1cvs http://maxima.sourceforge.net
Using Lisp CMU Common Lisp 19a
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1) x^2+y^2*z*x*y+2*a*x^2;
                                3          2    2
(%o1)                        x y  z + 2 a x  + x
(%i2) to_lisp();

Type (to-maxima) to restart, ($quit) to quit Maxima.

MAXIMA> $%i1
((MPLUS) ((MEXPT) $X 2) ((MTIMES) ((MEXPT) $Y 2) $Z $X $Y)
         ((MTIMES) 2 $A ((MEXPT) $X 2)))
MAXIMA> $%o1
((MPLUS SIMP) ((MEXPT SIMP) $X 2)
         ((MTIMES SIMP) 2 $A ((MEXPT SIMP) $X 2))
         ((MTIMES SIMP) $X ((MEXPT SIMP) $Y 3) $Z))
MAXIMA> (meval $%i1)
((MPLUS SIMP) ((MEXPT SIMP) $X 2)
         ((MTIMES SIMP) 2 $A ((MEXPT SIMP) $X 2))
         ((MTIMES SIMP) $X ((MEXPT SIMP) $Y 3) $Z))
MAXIMA> (to-maxima)
Returning to Maxima
(%o2)                                true
(%i3) integrate(1/(1+x^4),x);
                                                               2 x +
sqrt(2)
           2                         2                   
atan(-------------)
      log(x  + sqrt(2) x + 1)   log(x  - sqrt(2) x + 1)          
sqrt(2)
(%o3) ----------------------- - ----------------------- +
-------------------
             4 sqrt(2)                 4 sqrt(2)               2
sqrt(2)
                                                                 2 x -
sqrt(2)
                                                           
atan(-------------)
                                                                   
sqrt(2)
                                                          +
-------------------
                                                                 2
sqrt(2)
(%i4) to_lisp();

Type (to-maxima) to restart, ($quit) to quit Maxima.

MAXIMA> $%i3
(($INTEGRATE) ((MQUOTIENT) 1 ((MPLUS) 1 ((MEXPT) $X 4))) $X)
MAXIMA> (to-maxima)
Returning to Maxima
(%o4)                                true
(%i5) ?print('integrate(1/(1+x^4),x));

((%INTEGRATE SIMP) ((MEXPT SIMP) ((MPLUS SIMP) 1 ((MEXPT SIMP) $X 4))
-1) $X)                   /
                                  [   1
(%o5)                             I ------ dx
                                  ]  4
                                  / x  + 1
(%i6) to_lisp();

Type (to-maxima) to restart, ($quit) to quit Maxima.

MAXIMA> $%i3
(($INTEGRATE) ((MQUOTIENT) 1 ((MPLUS) 1 ((MEXPT) $X 4))) $X)
MAXIMA> $%i5
((PRINT) ((%INTEGRATE) ((MQUOTIENT) 1 ((MPLUS) 1 ((MEXPT) $X 4))) $X))
MAXIMA> (meval $%i3)
((MPLUS SIMP)
         ((MTIMES SIMP) ((RAT SIMP) 1 2) ((MEXPT SIMP) 2 ((RAT SIMP) -1
2))
          ((%ATAN SIMP)
           ((MTIMES SIMP) ((MEXPT SIMP) 2 ((RAT SIMP) -1 2))
            ((MPLUS SIMP)
             ((MTIMES SIMP RATSIMP) -1 ((MEXPT SIMP) 2 ((RAT SIMP) 1
2)))
             ((MTIMES SIMP RATSIMP) 2 $X)))))
         ((MTIMES SIMP) ((RAT SIMP) 1 2) ((MEXPT SIMP) 2 ((RAT SIMP) -1
2))
          ((%ATAN SIMP)
           ((MTIMES SIMP) ((MEXPT SIMP) 2 ((RAT SIMP) -1 2))
            ((MPLUS SIMP) ((MEXPT SIMP) 2 ((RAT SIMP) 1 2))
             ((MTIMES SIMP RATSIMP) 2 $X)))))
         ((MTIMES SIMP) ((RAT SIMP) -1 4) ((MEXPT SIMP) 2 ((RAT SIMP)
-1 2))
          ((%LOG SIMP)
           ((MPLUS SIMP) 1
            ((MTIMES SIMP RATSIMP) -1 ((MEXPT SIMP) 2 ((RAT SIMP) 1 2))
$X)
            ((MEXPT SIMP RATSIMP) $X 2))))
         ((MTIMES SIMP) ((RAT SIMP) 1 4) ((MEXPT SIMP) 2 ((RAT SIMP) -1
2))
          ((%LOG SIMP)
           ((MPLUS SIMP) 1
            ((MTIMES SIMP RATSIMP) ((MEXPT SIMP) 2 ((RAT SIMP) 1 2))
$X)
            ((MEXPT SIMP RATSIMP) $X 2)))))
MAXIMA> (setq $a1 (meval $%i5))
Warning:  Declaring $A1 special.

((%INTEGRATE SIMP) ((MEXPT SIMP) ((MPLUS SIMP) 1 ((MEXPT SIMP) $X 4))
-1) $X) ((%INTEGRATE SIMP) ((MEXPT SIMP) ((MPLUS SIMP) 1 ((MEXPT SIMP)
$X 4)) -1) $X)
MAXIMA> (meval $a1)
((%INTEGRATE SIMP)
         ((MEXPT SIMP) ((MPLUS SIMP) 1 ((MEXPT SIMP) $X 4)) -1) $X)



		
____________________________________________________ 
Yahoo! Sports 
Rekindle the Rivalries. Sign up for Fantasy Football 
http://football.fantasysports.yahoo.com