"quotient is not exact" with Taylor series expansion?
Subject: "quotient is not exact" with Taylor series expansion?
From: wheigl at mines
Date: Thu, 4 Aug 2005 15:29:56 -0600
Thanks, that worked for that square root function. However, a little further in
my derivation I need the taylor series of a longer expression which gave a
different error:
Maxima encountered a Lisp error:
Type-error in KERNEL::OBJECT-NOT-TYPE-ERROR-HANDLER:
(LAMBDA (X Y)
(GREATERP (CAR X) (CAR Y))) is not of type (OR FUNCTION SYMBOL)
Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
Here is the batch file I used:
--------------------------------------------------------------------------
/* Maxima batch file to derive series expansion of group velocity */
vp2:(a+b*(sin(x))^2+sqrt(c+d*(sin(x))^2+e*(sin(x))^4))/2;
ratsimp(diff(sqrt(vp2),x,1));
subst(x,sin(x),%);
subst(sqrt(1-x^2),cos(x),%);
ratsimp(%);
subst(x,sin(x),vp2);
Vphi2:%o7+%o6^2;
gcd:ez;
taylor(%o8,x,0,6);
--------------------------------------------------------------------------
Quoting Richard Fateman :
> try typing gcd:ez;
> and then run it again.
> it's a bug that has yet to be fixed involving interactions
> with polynomial gcd and (I think) non-rational objects like sqrt.
>
> RJF
>
>
> wheigl@mines.edu wrote:
>
> >Dear colleagues,
> >
> >I'm facing the following problem in Maxima 5.9.1:
> >
> >I need to find the 6-term Taylor expansion of
> >
> >sqrt((a+b*x^2+sqrt(c+d*x^2+e*x^4))/2);
> >
> >but Maxima responds with error message "quotient is not exact". However, a
> >4-term Taylor expansion works fine. See below. Any ideas?
> >
> >--------------------------------------------------------------------------
> >
> >(%i1) sqrt((a+b*x^2+sqrt(c+d*x^2+e*x^4))/2);
> >
> > 4 2 2
> > SQRT(SQRT(e x + d x + c) + b x + a)
> >(%o1) --------------------------------------
> > SQRT(2)
> >(%i2) taylor(%,x,0,6);
> >
> >quotient is not exact
> > -- an error. Quitting. To debug this try DEBUGMODE(TRUE);
> >(%i3) taylor(%o1,x,0,4);
> >
> > SQRT(SQRT(c) + a)
> >(%o3)/T/ -----------------
> > SQRT(2)
> >
> > 2
> > (SQRT(SQRT(c) + a) SQRT(c) d + 2 SQRT(SQRT(c) + a) b c) x
> > + ----------------------------------------------------------
> > (4 SQRT(2) a + 4 SQRT(c) SQRT(2)) c
> >
> > 2
> > + ((8 SQRT(SQRT(c) + a) c + 8 SQRT(SQRT(c) + a) SQRT(c) a c) e
> >
> > 2
> > + (- 3 SQRT(SQRT(c) + a) c - 2 SQRT(SQRT(c) + a) SQRT(c) a) d
> >
> > 2 2 4
> > - 4 SQRT(SQRT(c) + a) SQRT(c) b c d - 4 SQRT(SQRT(c) + a) b c ) x
> >
> > 3 2 2
> >/(32 SQRT(2) c + (32 SQRT(2) a + 64 SQRT(c) SQRT(2) a) c ) + . . .
> >
> >_______________________________________________
> >Maxima mailing list
> >Maxima@www.math.utexas.edu
> >http://www.math.utexas.edu/mailman/listinfo/maxima
> >
> >
>
>