Bug 754823 integrate(x^2/sqrt(1-x^2)/(1+x^2))



(the answer "in general" is quite a mess as a function of
a,b,c,e,f,g). Macsyma asks a bunch of questions.

Raymond Toy wrote:

>I've looked into this integral a bit, and I think I know why the
>result is wrong.
>
>It basically does a partial fraction expansion of 1/(1+x^2) to get the
>integral into the form 1/(x+a)/sqrt(1-x^2).  This might be ok, but
>then maxima applies the transformation y=x+a.  This would be ok too,
>except a is +/- %i and the resulting integral is of the form
>1/y/sqrt(<quadratic with imaginary coefficients>).
>
>Maxima uses integration formulas for 1/sqrt(<quadratic>), but I'm
>pretty sure the formulas hold only if the quadratic has real
>coefficients.
>
>G&R gives some methods for integrating functions of the form
>1/(e+f*x+g*x^2)/sqrt(a+b*x+c*x^2), but I'm too lazy to implement them
>right now.
>  
>
Here is the formula from Mathematica.

(Sqrt[2]*g*
  (-(Log[(2*Sqrt[f^2 - 4*e*g]*Sqrt[a + x*(b + c*x)])/
        (f - Sqrt[f^2 - 4*e*g] + 2*g*x) +
       (-4*a*g*Sqrt[f^2 - 4*e*g] +
         2*c*(-f^2 + 4*e*g + f*Sqrt[f^2 - 4*e*g])*x +
         b*(-f^2 + 4*e*g + f*Sqrt[f^2 - 4*e*g] -
           2*g*Sqrt[f^2 - 4*e*g]*x))/
        (Sqrt[2]*Sqrt[g*(-(b*f) + 2*a*g +
             b*Sqrt[f^2 - 4*e*g]) +
           c*(f^2 - 2*e*g - f*Sqrt[f^2 - 4*e*g])]*
         (-f + Sqrt[f^2 - 4*e*g] - 2*g*x))]/
     Sqrt[g*(-(b*f) + 2*a*g + b*Sqrt[f^2 - 4*e*g]) +
       c*(f^2 - 2*e*g - f*Sqrt[f^2 - 4*e*g])]) +
   Log[(-4*Sqrt[f^2 - 4*e*g]*Sqrt[a + x*(b + c*x)] +
       (Sqrt[2]*(2*(-2*a*g*Sqrt[f^2 - 4*e*g] +
            c*(f^2 - 4*e*g + f*Sqrt[f^2 - 4*e*g])*x) +
          b*(f^2 + f*Sqrt[f^2 - 4*e*g] -
            2*g*(2*e + Sqrt[f^2 - 4*e*g]*x))))/
        Sqrt[c*(f^2 - 2*e*g + f*Sqrt[f^2 - 4*e*g]) +
          g*(2*a*g - b*(f + Sqrt[f^2 - 4*e*g]))])/
      (2*(f + Sqrt[f^2 - 4*e*g] + 2*g*x))]/
    Sqrt[c*(f^2 - 2*e*g + f*Sqrt[f^2 - 4*e*g]) +
      g*(2*a*g - b*(f + Sqrt[f^2 - 4*e*g]))]))/
 Sqrt[f^2 - 4*e*g]

>So, for now, I'm going to modify maxima so that this integral and
>similar integrals will return the integral.
>
>How does that sound?
>
If it avoids giving a definitely wrong answer, sure.


>
>Ray
>
>_______________________________________________
>Maxima mailing list
>Maxima at math.utexas.edu
>http://www.math.utexas.edu/mailman/listinfo/maxima
>  
>