lsquare - problems



Hi,

to use mnewton you have to load it before using lsquares. Maybe you
will need to change newtonmaxiter and newtonepsilon to get a solution.
It should be possible to use lbfgs to do the fitting but I don't think
there is a function which does that in maxima.

HTH,
Andrej

On 11/20/06, Robert Gloeckner <RGloeckner at dki.tu-darmstadt.de> wrote:
> ** Reply Requested When Convenient **
>
> Hello,
> I tried to do some non-linear fits to my experimental data using lsquares, but I did not succeed till now. I described my problems here (in order not to have too big mails on this list.
>
>    http://paste.lisp.org/display/30278
>
>
>
> These are some of the functions I would like to fit to my experimental data:
>
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n * (a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) * (a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n * (a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) *log(a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n * (a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) / (a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n * log(a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) * (a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n * log(a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) *log(a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n * log(a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) / (a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n / (a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) * (a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n / (a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) *log(a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n / (a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) *log(a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>  lsquares(m, [T, g, n, l], l = 0.01 * g * (a1 * T + b1) + 0.01 * n / (a2 * T + b2) + 0.01 * (1 - 0.01 * (g + n)) / (a3 * T + b3), [a1, a2, a3, b1, b2, b3]);
>
>
> Are there any better methods of nonlinear fitting inside maxima?
>
>
> Thanks
> Robert
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>