DE that is nonlinear in its derivative



> From:  Barton Willis
> 
> Is there something other than ode2 that attempts to 
> solve a first order DE that is nonlinear in the 
> derivative? Something like 
> 
> (%o65) ('diff(r,t,1))^2=(2*r^2+2*r-1)/r^2
> (%i66) ode2(%,r,t);
> (%t66) ('diff(r,t,1))^2=(2*r^2+2*r-1)/r^2
> first order equation not linear in y'
> (%o66) false
> 
> OK solve for the derivative and use ode2:
> 
> (%i67) solve(%o65,diff(r,t));
> (%o67) 
> ['diff(r,t,1)=-sqrt(2*r^2+2*r-1)/r,'diff(r,t,1)=sqrt(2*r^2+2*r-1)/r]
> 
> (%i68) ode2(second(%),r,t);
> (%o68) 
> (sqrt(2)*sqrt(2*r^2+2*r-1)-log(2*sqrt(2)*sqrt(2*r^2+2*r-1)+4*r
> +2))/(2*sqrt(2))=t+%c

contrib_ode returns a parametric solution in terms of dummy variable %t.  
Not sure if is correct.  I didn't try to clean it up.
See share/contrib/diffequations/tests for a few hundred examples.



 (%i1)  eqn:('diff(r,t,1))^2=(2*r^2+2*r-1)/r^2;
                                       2
                             dr 2   2 r  + 2 r - 1
(%o1)                       (--)  = --------------
                             dt            2
                                          r
(%i2)
 load('contrib_ode);
(%o2)
     /usr/local/share/maxima/5.10.0/share/contrib/diffequations/contrib_ode.mac
(%i3) contrib_ode(eqn,r,t);
                                       2
                             dr 2   2 r  + 2 r - 1
(%t3)                       (--)  = --------------
                             dt            2
                                          r
 
                     first order equation not linear in y'
 
                                    2                     3/2
                          log(3 - %t )            2 %t - 2
                          ------------        log(-----------)
            /    2             2                          3/2
            [ (%t  - 4) %e                        2 %t + 2          %t
(%o3) [[t = I ------------------------- d%t + ---------------- + ---------
            ]   6       4        2               4 sqrt(2)           2
            / %t  - 7 %t  + 16 %t  - 12                          2 %t  - 4
                                                                2
                                                      log(3 - %t )
                                                      ------------
                        2               /    2             2
             sqrt(3 - %t ) - 1          [ (%t  - 4) %e
 + %c, r = - -----------------], [t = - I ------------------------- d%t
                    2                   ]   6       4        2
                  %t  - 2               / %t  - 7 %t  + 16 %t  - 12
               3/2
       2 %t - 2
   log(-----------)
               3/2                                   2
       2 %t + 2          %t               sqrt(3 - %t ) + 1
 + ---------------- + --------- + %c, r = -----------------]]
      4 sqrt(2)           2                      2
                      2 %t  - 4                %t  - 2


NOTICE
This e-mail and any attachments are private and confidential and may contain privileged information. If you are not an authorised recipient, the copying or distribution of this e-mail and any attachments is prohibited and you must not read, print or act in reliance on this e-mail or attachments.
This notice should not be removed.