Wolfgang,
I had the same situation, and I wrote this function:
mlinsolve(A,x,b) := block([m,eqs],
matrixp(A) or error("A must be a matrix!"),
(listp(x) and listp(b)) or error("x,b must be lists!"),
m : length(A),
eqs : [],
for i : 1 thru m do eqs : cons(row(A,i) . x = b[i], eqs),
linsolve(eqs,x)
)
Kostas
Wolfgang Lindner wrote:
> dear group,
>
> given a linear system m:[x+y=2,x-y=3] one gets the augmented system matrix via
>
> augcoefmatrix(m)= [1 1 -2]
> [1 -1 -3].
>
> Working with matrices and solving linear systems I need the 'inverse' procedure:
> given a m x n-matrix e.g.
>
> A: [1 1 -2]
> [1 -1 -3]
>
> I want to automatic construct the right 'input'list [x+y=2,x-y=3] to feed
> linsolve([x+y=2,x-y=3],[x,y]).
>
> Is there a maxima function who can do this?
>
> HTH Wolfgang
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima