ode2 problem (negative log arguments)



On Tue, 28 Aug 2007 22:40:41 -0500
Barton Willis <willisb at unk.edu> wrote:
> I think Maxima's answer is OK. Maybe the following is closer to what
> you need:
> 
> (%i1) 'diff(p,x) = 1/(W-x) - ((R-1)/(W-x)-1)*p;
> (%o1) 'diff(p,x,1)=1/(W-x)-p*((R-1)/(W-x)-1)
> 
> (%i2) ode2(%,p,x);
> (%o2)
> p=%e^((R-1)*log(x-W)+x)*(integrate(%e^(-(R-1)*log(x-W)-x)/(W-x),x)+%c)
> 
> (%i3) map('radcan,%);
> (%o3) p=((%e^x*integrate(%e^(-x)/(x-W)^R,x)-%c*%e^x)*(x-W)^R)/(W-x)
> 

Sadly not - I used radcan before, but R is some real number greater
than zero and x < W, so (x-W)^R is complex, which is not correct - p is
a probability distribution! :)

Rupert
-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 307 bytes
Desc: not available
Url : http://www.math.utexas.edu/pipermail/maxima/attachments/20070829/58ab5c4b/attachment.pgp