Maxima: simplification function error message.
- Subject: Maxima: simplification function error message.
- From: C. Frangos
- Date: Thu, 6 Sep 2007 13:27:55 +0200
I am applying my own simplification function mysimprec.mac (in Maxima 5.9,
5.10) to some complicated expressions (eg expression for detar pasted below)
and am getting errors like the following:
Quotient by a polynomial of higher degree
-- an error. Quitting. To debug this try debugmode(true);
Its not clear to me what this error message means.
Any assistance would be very much appreciated.
Regards,
C. Frangos.
mysimprec(s) := block(
[indexlist,sx,nf,listsimpf,nsx,nmin,simpf,sxnew],
/*listsimpf : [trigexpand, fullratsimp, trigsimp, factor, trigreduce],*/
/*listsimpf : [fullratsimp, trigrat, trigsimp, factor, trigreduce,
dividethru],*/
/*listsimpf : [fullratsimp, trigsimp, factor, trigreduce, dividethru],*/
listsimpf : [fullratsimp, trigsimp, factor, trigreduce],
nf : length(listsimpf),
sx : s,
nmin : length(string(sx)),
indexlist : [nmin],
for i1 : 1 thru nf do (
simpf : listsimpf[i1],
sxnew : apply(simpf,[sx]),
nsx : length(string(sxnew)),
if (nsx < nmin) then (
indexlist : endcons(simpf,indexlist),
indexlist : endcons(nsx,indexlist),
sx : sxnew,
nmin : nsx
)
),
display(indexlist),
return(sx)
);
detar = -a^2*dpsis*k^2*LC
*(SIN(delta3)*Ld*SIN(PHI)-SIN(delta3)*Lo1*COS(PHI)
-COS(delta3)*LC*COS(PHI))
*(SIN(delta3)*Lo1^2
*SQRT(4*SIN(delta3)^2*Lo1^2
+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)
*SIN(PHI)
+SIN(delta3)*LC^2
*SQRT(4*SIN(delta3)^2*Lo1^2
+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)
*SIN(PHI)-2*COS(delta3)*SIN(delta3)^2*Lo1^3*SIN(PHI)
+4*SIN(delta3)^3*LC*Lo1^2*SIN(PHI)-SIN(delta3)*LC*Lo1^2*SIN(PHI)
+2*COS(delta3)*SIN(delta3)^2*LC^2*Lo1*SIN(PHI)
+SIN(delta3)*LC^3*SIN(PHI)
-SIN(delta3)*Ld*Lo1
*SQRT(4*SIN(delta3)^2*Lo1^2
+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)
*COS(PHI)
-COS(delta3)*LC*Ld
*SQRT(4*SIN(delta3)^2*Lo1^2
+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)
*COS(PHI)
-2*COS(delta3)*SIN(delta3)^2*Ld*Lo1^2*COS(PHI)
+2*SIN(delta3)^3*LC*Ld*Lo1*COS(PHI)
-3*SIN(delta3)*LC*Ld*Lo1*COS(PHI)-COS(delta3)*LC^2*Ld*COS(PHI))
/(2*(SQRT(4*SIN(delta3)^2*Lo1^2+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)
+LC)
*(3*SIN(delta3)^2*LC*Lo1^2
*SQRT(4*SIN(delta3)^2*Lo1^2+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)
+3*COS(delta3)*SIN(delta3)*LC^2*Lo1
*SQRT(4*SIN(delta3)^2*Lo1^2+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)
+LC^3*SQRT(4*SIN(delta3)^2*Lo1^2+4*COS(delta3)*SIN(delta3)*LC*Lo1
+LC^2)+4*SIN(delta3)^4*Lo1^4
+8*COS(delta3)*SIN(delta3)^3*LC*Lo1^3
+4*COS(delta3)^2*SIN(delta3)^2*LC^2*Lo1^2+5*SIN(delta3)^2*LC^2*Lo1^2
+5*COS(delta3)*SIN(delta3)*LC^3*Lo1+LC^4))
-a^2*dpsis*k^2*LC
*(SIN(delta3)*Lo1*SIN(PHI)+COS(delta3)*LC*SIN(PHI)
+SIN(delta3)*Ld*COS(PHI))
*(SIN(delta3)*Ld*Lo1
*SQRT(4*SIN(delta3)^2*Lo1^2
+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)*SIN(PHI)
+COS(delta3)*LC*Ld
*SQRT(4*SIN(delta3)^2*Lo1^2
+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)*SIN(PHI)
+2*COS(delta3)*SIN(delta3)^2*Ld*Lo1^2*SIN(PHI)
-2*SIN(delta3)^3*LC*Ld*Lo1*SIN(PHI)
+3*SIN(delta3)*LC*Ld*Lo1*SIN(PHI)+COS(delta3)*LC^2*Ld*SIN(PHI)
+SIN(delta3)*Lo1^2
*SQRT(4*SIN(delta3)^2*Lo1^2
+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)*COS(PHI)
+SIN(delta3)*LC^2
*SQRT(4*SIN(delta3)^2*Lo1^2
+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)*COS(PHI)
-2*COS(delta3)*SIN(delta3)^2*Lo1^3*COS(PHI)
+4*SIN(delta3)^3*LC*Lo1^2*COS(PHI)-SIN(delta3)*LC*Lo1^2*COS(PHI)
+2*COS(delta3)*SIN(delta3)^2*LC^2*Lo1*COS(PHI)
+SIN(delta3)*LC^3*COS(PHI))
/(2*(SQRT(4*SIN(delta3)^2*Lo1^2+4*COS(delta3)*SIN(delta3)*LC*Lo1+LC^2)
+LC)
*(3*SIN(delta3)^2*LC*Lo1^2
*SQRT(4*SIN(delta3)^2*Lo1^2+4*COS(delta3)*SIN(delta3)*LC*Lo1
+LC^2)
+3*COS(delta3)*SIN(delta3)*LC^2*Lo1
*SQRT(4*SIN(delta3)^2*Lo1^2+4*COS(delta3)*SIN(delta3)*LC*Lo1
+LC^2)
+LC^3*SQRT(4*SIN(delta3)^2*Lo1^2+4*COS(delta3)*SIN(delta3)*LC*Lo1
+LC^2)+4*SIN(delta3)^4*Lo1^4
+8*COS(delta3)*SIN(delta3)^3*LC*Lo1^3
+4*COS(delta3)^2*SIN(delta3)^2*LC^2*Lo1^2
+5*SIN(delta3)^2*LC^2*Lo1^2+5*COS(delta3)*SIN(delta3)*LC^3*Lo1
+LC^4))