On 9/17/07, andre maute <andre.maute at gmx.de> wrote:
> ------------------------------------------------------------------------------
> (%o13) ((gamma (a + 1) gamma (b + 1) gamma (b + a + 3)
> 2 2
> + (- gamma (a + 1) gamma (b + 2) + 2 gamma(a + 1) gamma(a + 2) gamma(b + 1)
> 2 2 2
> gamma(b + 2) - gamma (a + 2) gamma (b + 1)) gamma (b + a + 2))
> 2 2
> gamma (b + a + 4) + (gamma (a + 1) gamma(b + 1) gamma(b + 3)
> - 2 gamma(a + 1) gamma(a + 2) gamma(b + 1) gamma(b + 2)
> 2 2
> + gamma(a + 1) gamma(a + 3) gamma (b + 1)) gamma(b + a + 2) gamma (b + a + 3)
> gamma(b + a + 4)) gamma(b + a + 5)
> ------------------------------------------------------------------------------
>
> Question:
>
> How can I find minimal n1, n2, n3 such that
>
> gamma(a+n1), gamma(b+n2) and gamma(a+b+n3)
>
> are appearing in the above term?
Sorry, I don't understand what you're driving at here.
For the above example, what do you want to see for the result?
Or you could show some other example or examples.
it seems like an interesting problem, I hope we can help.
Robert Dodier