On Monday 17 September 2007, Stavros Macrakis wrote:
> On 9/17/07, andre maute <andre.maute at gmx.de> wrote:
> > I have terms being polynomial in gamma terms like the following
> > ...
> > How can I find minimal n1, n2, n3 such that
> > gamma(a+n1), gamma(b+n2) and gamma(a+b+n3)
> > are appearing in the above term?
>
> Could you please re-send your expression in 1-dimensional form
> (display2d:false or string(...))? 2-dimensional form gets garbled in
> emails.
>
> -s
(%o24) ((gamma(a+1)^2*gamma(b+1)^2*gamma(b+a+3)^2
+(-gamma(a+1)^2*gamma(b+2)^2+2*gamma(a+1)*gamma(a+2)*gamma(b+1)
*gamma(b+2)-gamma(a+2)^2*gamma(b+1)^2)
*gamma(b+a+2)^2)
*gamma(b+a+4)^2
+(gamma(a+1)^2*gamma(b+1)*gamma(b+3)
-2*gamma(a+1)*gamma(a+2)*gamma(b+1)*gamma(b+2)
+gamma(a+1)*gamma(a+3)*gamma(b+1)^2)
*gamma(b+a+2)*gamma(b+a+3)^2*gamma(b+a+4))
*gamma(b+a+5)
it should be the same expression, regardless the question remains the same
Andre