Problem with long expressions in imaxima



I don't use imaxima, because I think that what you observe is hard to avoid.
imaxima tries to break up large expressions by using breqn  or some 
macro package for TeX.
It then runs it through some program to convert dvi to postscript to 
some displaying program.

None of this is, I think, sturdy enough for handling really large 
expressions. I suspect that there
are fixed sizes of tables and exponentially expensive algorithms for 
breakup.

These programs are not part of emacs or maxima.  gs is ghostscript, a 
postscript interpreter.
RJF

David Ronis wrote:
> I've been using imaxima for a short while, and for simple things it
> works as expected (and makes the output much easier to read).  However,
> for very long expressions something goes wrong.  Emacs/maxima spends a
> long time formatting the results(?), I see gs running in the background,
> and in the end, all that gets output are pages raw tex.  The following
> shows the problem:
>
>  
> exponentialize:true;
> En(i,l,m, mu, epsilon):=epsilon*(cosh(mu)*(l+1/2)*(A[i,l,m]*%e^((l
> +1/2)*mu)-B[i,l,m]*%e^(-(l+1/2)*mu))
>         +sinh(mu)*(A[i,l,m]*%e^((l+1/2)*mu)+B[i,l,m]*%e^(-(l+1/2)*mu))
>         -sqrt((l+m)*(l-m)/((2*l-1)*(2*l+1)))*(l-1/2)
>         *(A[i,l-1,m]*%e^((l-1/2)*mu)-B[i,l-1,m]*%e^(-(l-1/2)*mu))
>         -sqrt((l+1+m)*(l+1-m)/((2*l+3)*(2*l+1)))*(l-3/2)
>         *(A[i,l+1,m]*%e^((l+1/2)*mu)-B[i,l+1,m]*%e^(-(l-3/2)*mu)));
>
> phi(i,l,m,mu):=A[i,l,m]*%e^((l+1/2)*mu)+B[i,l,m]*%e^(-(l+1/2)*mu);
>
> ans:solve([ phi(0,l,m,mu[0])-phi(1,l,m,mu[0])=0,
>       phi(1,l,m,mu[1])-phi(2,l,m,mu[2])=0,
>       phi(2,l,m,-mu[2])-phi(3,l,m,-mu[2])=0,
>       En(0,l,m,mu[0],epsilon[1])-En(1,l,m,mu[0],epsilon[1])=-1,
>       En(1,l,m,mu[1],epsilon[1])-En(2,l,m,mu[1],epsilon[2])=0,
>       En(2,l,m,-mu[2],epsilon[2])- En(3,l,m,-mu[2], epsilon[3])=0,
>       A[0,l,m]=0, B[3,l,m]=0],
>       [ A[0,l,m], B[0,l,m], A[1,l,m], B[1,l,m],
>         A[2,l,m], B[2,l,m], A[3,l,m], B[3,l,m]] )$
>     
> part(ans,1);
>
>
> David
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>