In rtest9, problems 67 and 68, we have
product((x^i+1)^2.5,i,1,inf)/(x^2+1);
('product((x^i+1)^2.5,i,1,inf))/(x^2+1)$
ev(taylor(%,x,0,3),keepfloat);
1+2.5*x+3.375*x^2+6.5625*x^3$
Using 5.14.0:
(%i1) product((x^i+1)^2.5,i,1,inf)/(x^2+1);
`rat' replaced 2.5 by 5/2 = 2.5
(%o1) product((x^i+1)^(5/2),i,1,inf)/(x^2+1)
(%i2) ev(taylor(%,x,0,3),keepfloat);
(%o2) 1+(5*x)/2+(27*x^2)/8+(105*x^3)/16+...
Isn't (%o1) wrong? I think Maxima should preserve the float exponent.
This is the way sum works:
(%i4) sum((x^i+1)^2.5,i,1,inf)/(x^2+1);
(%o4) sum((x^i+1)^2.5,i,1,inf)/(x^2+1)
Given that product (incorrectly) changes the exponent to 5/2, the
test ev(taylor(%,x,0,3),keepfloat) should fail. But due to the way the
test suite checks taylor polynomials, it doesn't :(
Barton