two questions: A) list length of solve result, B) 0^0



On Saturday 07 June 2008, andre maute wrote:
> I have the following stripped down test case,
>
> --------------------------------------------------------------
> $ maxima -b solve-result.max
> Maxima 5.15.0 http://maxima.sourceforge.net
> Using Lisp SBCL 1.0.11.debian
> Distributed under the GNU Public License. See the file COPYING.
> Dedicated to the memory of William Schelter.
> The function bug_report() provides bug reporting information.
> (%i1)                       batch(solve-result.max)
>
> batching /home/user/solve-result.max
> (%i2)                       solve([c11 = 0], [c11])
> (%o2)                              [c11 = 0]
> (%i3)                solve([c12 = 0, c22 = 0], [c12, c22])
> (%o3)                        [[c12 = 0, c22 = 0]]
> ---------------------------------------------------------------
>
> in my application a function generates a set of equation and variables
> which are fed to solve. I don't know the variables a priori.
>
> Question 1:
> Both have obviously length 1, how can I differentiate both cases?
> Is it possible to remove the other brackets in the second case?

O.K. a trivial workaround the variable list must be available,
	so one can easily check (in my application) for its length.

But is it possible to set some global parameter,
to avoid such workarounds?

>
> and here the next one,
>
> -------------------------------------------------------------
> $ maxima -b bernstein.max
> Maxima 5.15.0 http://maxima.sourceforge.net
> Using Lisp SBCL 1.0.11.debian
> Distributed under the GNU Public License. See the file COPYING.
> Dedicated to the memory of William Schelter.
> The function bug_report() provides bug reporting information.
> (%i1)                        batch(bernstein.max)
>
> batching /home/user/bernstein.max
> (%i2)                          display2d : false
> (%o2) false
> (%i3) my_bernstein(n,k,x):=binomial(n,k)*(x+1)^k*(1-x)^(n-k)
> (%o3) my_bernstein(n,k,x):=binomial(n,k)*(x+1)^k*(1-x)^(n-k)
> (%i4) my_bernstein(0,0,1)
> 0^0 has been generated
> #0: my_bernstein(n=0,k=0,x=1)(bernstein.max line 0)
>  -- an error.  To debug this try debugmode(true);
> --------------------------------------------------------------
>
>
> Question 2:
> Experimenting with Bernstein polynomials,
> 0^0 is triggered but here, 0^0 = 1, can safely be assumed.
> Is it possible to suppress this error?
>
> Andre
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima