Howto simplify Integral with jacobi polynomials



In order to get the corresponding
weighted L2-norm for the Jacobi polynomials

I tried the following

-------------------------------------------------------------------
~$ maxima -b jacobibug.max
Maxima 5.15.0 http://maxima.sourceforge.net
Using Lisp SBCL 1.0.11.debian
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1)                        batch(jacobibug.max)

batching /home/myuser/jacobibug.max
(%i2)                          display2d : false
(%o2) false
(%i3) load("orthopoly")
(%o3) "/home/seirios/opt/maxima/share/maxima/5.15.0/share/orthopoly/orthopoly.lisp"
(%i4) declare(k,integer)
(%o4) done
(%i5) assume(k >= 0)
(%o5) [k >= 0]
(%i6) declare(l,integer)
(%o6) done
(%i7) assume(l >= 0)
(%o7) [l >= 0]
(%i8) declare(a,real)
(%o8) done
(%i9) assume(a > -1)
(%o9) [a > -1]
(%i10) declare(b,real)
(%o10) done
(%i11) assume(b > -1)
(%o11) [b > -1]
(%i12) integrate(jacobi_p(k,a,b,x)*jacobi_p(k,a,b,x)*(1-x)^a*(x+1)^b,x,-1,1)
(%o12) pochhammer(a+1,k)^2*('integrate(('sum(
                                        pochhammer(-k,i)*pochhammer(k+b+a+1,i)
                                                        *pochhammer(a+1,i)^-1
                                                        *i!^-1*((1-x)/2)^i,i,
                                        0,k))
                                        ^2
                                        *(1-x)^a*(x+1)^b,x,-1,1))
        /k!^2
-------------------------------------------------------------------------------

Do i have to write my own simplification rule?

For the documentation, especially the orthopoly section,
Abramowitz & Stegun (A&S) is freely available
but Gradshteyn & Ryzhik and Merzbacher are not.

Couldn't the documentation be a litlle bit more specific
at least for the nonfree citations?
Perhaps implementing the tables of A&S would help here also.

Andre