Hi, its my first post here.
I don't know what do you mean by 'simpler' but I found:
(%i1)L:[-sin(x)^2/(cos(x)^2-1),sin(x)^2/(cos(x)^2-1),1,(cos(x)^2-1)/sin(x)^2,-cos(x)^2/(sin(x)^2-1),cos(x)^2/(sin(x)^2-1),1,(sin(x)^2-1)/cos(x)^2]$
(%i2) load(trigrat);
(%o2) /usr/share/maxima/5.15.0/share/trigonometry/trigrat.lisp
(%i3) trigrat(L);
(%o3) [1, - 1, 1, - 1, 1, - 1, 1, - 1]
Rafal Topolnicki
> I am looking for more power in simplifying expressions
> using cos(x)^2 + sin(x)^2 = 1.
>
> My candidate so far is:
>
> ts1(expr):=
> (trigreduce(expr),trigexpand(%%),trigsimp(%%) )$
>
> A comparison test is:
>
> (%i17) display2d:false$
>
> (%i18) map('trigsimp, [sin(x)^2/(1-cos(x)^2), sin(x)^2/(cos(x)^2-1),
> (1-cos(x)^2)/sin(x)^2, (cos(x)^2-1)/sin(x)^2,
> cos(x)^2/(1-sin(x)^2),
> cos(x)^2/(sin(x)^2-1), (1-sin(x)^2)/cos(x)^2,
> (sin(x)^2-1)/cos(x)^2]);
>
> (%o18) [-sin(x)^2/(cos(x)^2-1), sin(x)^2/(cos(x)^2-1), 1,
> (cos(x)^2-1)/sin(x)^2,
> -cos(x)^2/(sin(x)^2-1), cos(x)^2/(sin(x)^2-1), 1,
> (sin(x)^2-1)/cos(x)^2]
>
> (%i19) map('ts1,[sin(x)^2/(1-cos(x)^2), sin(x)^2/(cos(x)^2-1),
> (1-cos(x)^2)/sin(x)^2, (cos(x)^2-1)/sin(x)^2,
> cos(x)^2/(1-sin(x)^2),
> cos(x)^2/(sin(x)^2-1), (1-sin(x)^2)/cos(x)^2,
> (sin(x)^2-1)/cos(x)^2]);
>
> (%o19) [1, -1, 1, -1, 1, -1, 1, -1]
>
> Is there a simpler way to get the same simplifying power?
>
> Ted Woollett
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>