integrate returns undefined .. Bug in zero denominator?
Subject: integrate returns undefined .. Bug in zero denominator?
From: Richard Hennessy
Date: Fri, 12 Sep 2008 12:45:03 -0400
The fundamental theorem of integral caculus can be extented to this slightly
stronger statement under the right conditions (which apply in this case).
integrate(f(x),x,a,b) = limit(F(x),x,b) - limit(F(x),x,a)
diff(F(X),x) = f(x)
Then solving it this way could be a solution to the integrate bug.
Rich
----- Original Message -----
From: "John Lapeyre" <pdl at johnlapeyre.com>
To: <maxima at math.utexas.edu>
Sent: Wednesday, September 10, 2008 4:53 PM
Subject: Re: [Maxima] integrate returns undefined .. Bug in zero
denominator?
> This is not too pretty, but it seems to remove some bad
> solutions. For simplicity, it assumes the eqn is of the form
> someexpr = 0. It checks some solutions of univariate
> equations. Multivariate cases and some complicated cases
> are supposed to fall through. It also assumes that if
> limit() returns a number, it is more reliable than when
> solve() returns a solution!
>
> mysolve(sin(x-y)/(x-y),x);
>
> `solve' is using arc-trig functions to get a solution.
> Some solutions will be lost.
> (%o5) []
>
> ------------
> removebadsolns(expr,solns,var) := block( [s,var1,lim],
> for s in solns do (
> var1:inpart(s,1),
> if mapatom(var1) and var1 = var then (
> lim:limit(expr,var,inpart(s,2)),
> if numberp(lim) and lim # 0 then
> solns:delete(s,solns))),
> solns);
>
> mysolve(expr,var) := block([solns],
> solns:solve(expr,var),
> if not listp(var) then
> solns:removebadsolns(expr,solns,var) else solns);
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima