Yes, you are correct. The formula in general transforms:
r*cos(x)+s*sin(x) to
sqrt(r^2+s^2)*cos(x-atan2(s,r)).
Here is a reference: http://en.wikipedia.org/wiki/Trigonometric_Identities.
Dan
Raymond Toy wrote:
> Dan Stanger wrote:
>
>> Abramowitz&Stegun 9.6.34.
>>
>>
>
> Is there not a slight error here. Previously you wrote
>
>
>> A combination of radcan, and trigsimp reduces this integral to the
>> following:
>> integrate((%e)^(4 * b * c * sin(x) + 4 * a * b * cos(x) - 2 * c2 - 2 *
>> b2 - 2 * a2),x,0,2 * %pi)
>>
> So the interesting part is 4*b*c*sin(x)+4*a*b*cos(x) =
> 4*b*(c*sin(x)+a*cos(x)). But we can still write c*sin(x)+a*cos(x) in
> the form A*cos(x-phase).
>
> Ray
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>
>