FullForm[...] in Maxima?



I don't know what FullForm does exactly, but you can see the Lisp
representation of a Maxima expression with ?print(...), for example:

(%i1) ?print(diff(f(x),x))$
((%DERIVATIVE SIMP) (($F SIMP) $X) $X 1)

(%i2) ?print((1-x)/(1+x))$
((MTIMES SIMP) ((MPLUS SIMP) 1 ((MTIMES SIMP) -1 $X))
 ((MEXPT SIMP) ((MPLUS SIMP) 1 $X) -1))

(%i3) ?print(rat((1-x)/(1+x)))$
((MRAT SIMP ($X) (#:X33339)) (#:X33339 1 -1 0 1) #:X33339 1 1 0 1)
   *** This is a special internal form for rational expressions.

At the Maxima level, Maxima lets you manipulate either the internal form or
the external form:

part(x/y,0) => "/"
inpart(x/y,0) => "*"
or part(x/y,0), inflag:true => "*"

Using these functions, you can define your own display of Maxima's internal
forms, e.g.

show_form(ex) :=
  if atom(ex)
  then ex
  else funmake(nounify(concat(" ", part(ex, 0))),
               maplist(show_form, ex))$

show_form((1-x)/(1+x)) =>
         /( +(x, 1),  +(1,  -(x)))

show_form((1+x)/(1-x)),inflag:true;
         *( ^( +(1,  *(- 1, x)), - 1),  +(1, x))

Is this what you had in mind?

          -s


On Mon, Dec 22, 2008 at 12:01 PM, Martin Sch?necker <ms_usenet at gmx.de>wrote:

> Hello,
>
> in Mathematica I like to use the FullForm to see the
> Mathematica-internal representation of an expression.  For example,
> FullForm[D[f[x],x]] would show that the internal representation is
> Derivative[1][f][x], which can be used for further pattern-matching, or
> other things.
>
> Is there a similar command in Maxima to learn how it likes to represent
> expressions?
>
> Thank you,
> Martin
>
>
>
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>