I don't know what FullForm does exactly, but you can see the Lisp
representation of a Maxima expression with ?print(...), for example:
(%i1) ?print(diff(f(x),x))$
((%DERIVATIVE SIMP) (($F SIMP) $X) $X 1)
(%i2) ?print((1-x)/(1+x))$
((MTIMES SIMP) ((MPLUS SIMP) 1 ((MTIMES SIMP) -1 $X))
((MEXPT SIMP) ((MPLUS SIMP) 1 $X) -1))
(%i3) ?print(rat((1-x)/(1+x)))$
((MRAT SIMP ($X) (#:X33339)) (#:X33339 1 -1 0 1) #:X33339 1 1 0 1)
*** This is a special internal form for rational expressions.
At the Maxima level, Maxima lets you manipulate either the internal form or
the external form:
part(x/y,0) => "/"
inpart(x/y,0) => "*"
or part(x/y,0), inflag:true => "*"
Using these functions, you can define your own display of Maxima's internal
forms, e.g.
show_form(ex) :=
if atom(ex)
then ex
else funmake(nounify(concat(" ", part(ex, 0))),
maplist(show_form, ex))$
show_form((1-x)/(1+x)) =>
/( +(x, 1), +(1, -(x)))
show_form((1+x)/(1-x)),inflag:true;
*( ^( +(1, *(- 1, x)), - 1), +(1, x))
Is this what you had in mind?
-s
On Mon, Dec 22, 2008 at 12:01 PM, Martin Sch?necker <ms_usenet at gmx.de>wrote:
> Hello,
>
> in Mathematica I like to use the FullForm to see the
> Mathematica-internal representation of an expression. For example,
> FullForm[D[f[x],x]] would show that the internal representation is
> Derivative[1][f][x], which can be used for further pattern-matching, or
> other things.
>
> Is there a similar command in Maxima to learn how it likes to represent
> expressions?
>
> Thank you,
> Martin
>
>
>
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>