sloane's integer sequences and maxima



Hi,

that's great!!

It would be good if on some Maxima page information on updates
of this package would be available.
Why not having a "big Maxima package", which includes
the data? (Still quite a bit smaller than e.g., Axiom
or Sage.)

Oliver


On Sun, Jan 25, 2009 at 10:45:54PM +0300, Alexey Beshenov wrote:
> On Monday 08 September 2008 12:06:42 andre maute wrote:
> > wouldn't it be nice to optionally ship a version
> > of sloane's integer sequences with maxima?
> 
> Here is my interface for EIS: http://beshenov.ru/maxima/eis/
> 
> eis-maxima-data.tar.bz2 takes 42M, so I'm sure it should be
> distributed as a separate package.
> 
> Example:
> -----------------------------------------------------------------
> 
> (%i1) load ("/usr/share/eis-maxima/eis.lisp")$
> 
> (%i2) eis_search (1, 2, 3, 4, 6, 9);
> (%o2) [A000792, A000930, A001115, A001521, A001935, A003143, 
> A005428, A007210, A007604, A013950, A014851, A016028, A017823, 
> A017824, A017825, A017826, A017982, A017983, A018130, A018140, 
> A018256, A018287, A018393, A018431, A018471, A018550, A018591, 
> A018669, A018752, A022159, A022161, A022859, A022860, A022875, 
> A022956, A026437, A027338, A027594, A027751, A033069, A035312, 
> A035947, A035952, A035958, A035965, A035973, A035982, A035992, 
> A036003, A036561, A039865, A039884, A046097, A047419, A048249, 
> A051404, A056230, A056751, A057285, A057287, A058355, A060729, 
> A061481, A062121, A062437, A064174, A068921, A069907, A073576, 
> A073941, A076968, A078012, A078529, A078620, A078932, A081237, 
> A081419, A081454, A081532, A082976, A083197, A089797, A094054, 
> A094995, A096824, A097557, A098578, A098889, A099558, A101626, 
> A103481, A105781, A108858, A111251, A111791, A111792, A112868, 
> A113197, A113199, A117791, A119919, A121653, A123648, A126011, 
> A127604, A128166, A128399, A129632, A130899, A131338, A132134, 
> A132600, A135205, A135851, A136423, A136561, A138029, A138857, 
> A138881, A139040, A139076, A139077, A141396, A143951, A144429, 
> A145733]
> 
> (%i3) eis_name (A018591)$
>   A018591 - Divisors of 684.
> 
> (%i4) eis_search_name (1, 2, 3, 4, 6, 9, 8)$
>   A036561 - Triangle of numbers in which i-th row is
>             {2^(i-j)*3^j, 0<=j<=i}; i >= 0.
> 
>   A082976 - Erroneous version of A036561.
> 
>   A119919 - Table read by antidiagonals: number of rationals in
>             [0, 1) having at most n preperiodic bits, then at
>             most k periodic bits (read up antidiagonals).
> 
> (%i5) eis_details (A124136)$
> 
> A124136 - a(n) is the smallest prime when larger number of primes
>           arise between numbers and their doubles. Note for
>           example that there are 8 primes between 34 and 2*34=68
>           and 35 and 2*35=70, but 34 and 35 are not primes and
>           a(8)=37, which is the smallest prime where there are
>           already nine primes between numbers 36, 37, 38, 39, 41,
>           43, 44, 47, 48 and their doubles.
> 
> UNSIGNED TERMS
>   2, 7, 11, 17, 23, 29, 31, 37, 53, 59, 71, 79, 89, 97, 101, 127,
> 137, 149, 157, 179, 191, 211, 223, 233, 251, 257, 263, 293, 307,
> 311, 331, 347, 367, 373, 379, 389, 409, 419, 431, 443, 457, 479,
> 487, 499, 521, 541, 547, 557, 563, 587, 599, 613, 617, 631, 641
> 
> OFFSET
>   1, 1
> 
> EXAMPLES
>   a(2)=7 since 7 is first prime when two primes are between 7 and
> its double.
>   a(10)=59 since 59 is first prime after 55 and 56 when ten
> primes are between these numbers and their doubles.
> 
> MAPLE PROGRAM
>   ts_c:=proc(n) local i,j,st_p,max_stp,ans; ans:= [ ]: st_p:=0:
> max_stp:=0: for i from 2 to n do for j from i+1 to 2*i-1 do if
> (isprime(j) = 'true') then st_p:=st_p+1: fi od: if (st_p >
> max_stp and isprime(i) = 'true') then max_stp := st_p: ans:=[
> op(ans),i ]: fi; st_p:=0: od: RETURN(ans) end: ts_c(1200);
> 
> CROSS-REFERENCES
>   Cf. A060756, A060715, A084139.
>   Adjacent sequences: A124133 A124134 A124135 this_sequence
> A124137 A124138 A124139
>   Sequence in context: A090613 A063097 A038942 this_sequence
> A019385 A075552 A124854
> 
> COMMENTS
>   a(n) is the index of first occurrence of prime n in A060715.
> 
> KEYWORDS
>   nonn, uned
> 
> AUTHOR
>   Jani Melik (jani_melik(AT)hotmail.com), Nov 30 2006
> -----------------------------------------------------------------
> 
> -- 
> Setting Orange, Chaos 25 YOLD 3175
> Alexey Beshenov  http://beshenov.ru/
>