Try this.
realpart(bessel_j(1,1*%i)),numer;
imagpart(bessel_j(1,1*%i)),numer;
the numer flag tells Maxima to give the answer in floating point.
The result you are getting symbolically is the exact answer which is, in the simplified form, itself.
Rich
----- Original Message -----
From: "Schirmacher, Rolf" <Rolf.Schirmacher at MuellerBBM.de>
To: <maxima at math.utexas.edu>
Sent: Tuesday, January 27, 2009 4:41 PM
Subject: Bessel function with imaginary argument
Hello,
I get the following strange result for bessel_j(1,z) with purely imaginary
argument:
First, try numerical evaluation:
(%i127) bessel_j(1,1.0*%i);
(%o127) 0.56515910399249*%i
(%i128) realpart(bessel_j(1,1.0*%i));
(%o128) 0
(%i130) imagpart(bessel_j(1,1.0*%i));
(%o130) 0.56515910399249
This looks fine. Now, if I want to get the realpart / imagpart symbolically,
it is wired:
(%i131) realpart(bessel_j(1,1*%i));
(%o131) bessel_j(1,%i)
(%i132) imagpart(bessel_j(1,1*%i));
(%o132) 0
What am I doing wrong?
I am using the pre-built Windows release:
wxMaxima 0.8.1 http://wxmaxima.sourceforge.net
Maxima 5.17.1 http://maxima.sourceforge.net
Using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (aka GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
I am not an expert to maxima neither to lisp ...
Any hint is highly appreciated.
Thanks,
Rolf
_______________________________________________
Maxima mailing list
Maxima at math.utexas.edu
http://www.math.utexas.edu/mailman/listinfo/maxima