Problems with complex numbers



(%i2) gfactor(%i*k^4 -2*k^3 -2*%i*k^2+2*k+%i);

(%o2) %i*(k-1)*(k+1)*(k+%i)^2

See ?gfactor

HTH

Volker van Nek


Michel Talon schrieb:
> Hello,
>
> maxima has difficulties factoring polynomials on the complex field.
> As an example, compare the following maple and maxima computation:
>
> niobe% maple
>     |\^/|     Maple 9 (IBM INTEL LINUX)
> ._|\|   |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc.
> 2003
>  \  MAPLE  /  All rights reserved. Maple is a trademark of
>  <____ ____>  Waterloo Maple Inc.
>       |       Type ? for help.
>   
>> factor(I*k^4 -2*k^3 -2*I*k^2+2*k+I);
>>     
>                                       2
>                (k - 1) (k + 1) (k + I)  I
>
>   
>> quit
>>     
> bytes used=978068, alloc=851812, time=0.05
>
>
> niobe% maxima
> (%i1) algebraic:true;
> (%o1)                                true
> (%i2)  factor(%i*k^4 -2*k^3 -2*%i*k^2+2*k+%i);
>                                            2
> (%o2)                 (k - 1) (k + 1) (%i k  - 2 k - %i)
> (%i3)  factor(%i*k^4 -2*k^3 -2*%i*k^2+2*k+%i,b^2+1);
>                                                     2
> (%o3)                    %i (k - 1) (k + 1) (k + %i)
>
> Note that it is necessary to specify that the computation is in the field of
> b^2+1 to get the answer. Moreover in many cases, b is returned in place
> of %i and many simplifications are missed.
>
> Is there any way to get more efficient computations?
>
> Thanks you very much
>
>