[ maxima-Bugs-609464 ] 1+%e,numer and %e^%e,numer



Am Sonntag, den 17.05.2009, 21:38 +0200 schrieb Dieter Kaiser:

These would be the results with some extensions to the simplifier:

(%i16) %e,numer;
(%o16) 2.718281828459045

(%i17) %e+1,numer;
(%o17) 3.718281828459045

(%i18) (%e+1)^2,numer;
(%o18) 13.82561975584874

(%i19) %e*(%e+1)^2,numer;
(%o19) 37.58192980822521

(%i20) %e^%e,numer;
(%o20) 15.15426224147926

(%i21) (1+%e)^%e,numer;
(%o21) 35.51003672578372

(%i22) (1+%e)^(2*%e+1),numer;
(%o22) 4688.613707948547

(%i23) sin(%e+1),numer;
(%o23) -.5452515566923345

With an extension to simp-%sin, we get:

(%i24) sin(%e),numer;
(%o24) .4107812905029088

In these expressions %e is not simplified to a number:

(%i27) %e^(2*x+1),numer;
(%o27) %e^(2*x+1)

(%i28) sin(%e^(2*x+1)),numer;
(%o28) sin(%e^(2*x+1))

Dieter Kaiser