Subject: [ maxima-Bugs-609464 ] 1+%e,numer and %e^%e,numer
From: Dieter Kaiser
Date: Sun, 17 May 2009 22:35:53 +0200
Am Sonntag, den 17.05.2009, 21:38 +0200 schrieb Dieter Kaiser:
These would be the results with some extensions to the simplifier:
(%i16) %e,numer;
(%o16) 2.718281828459045
(%i17) %e+1,numer;
(%o17) 3.718281828459045
(%i18) (%e+1)^2,numer;
(%o18) 13.82561975584874
(%i19) %e*(%e+1)^2,numer;
(%o19) 37.58192980822521
(%i20) %e^%e,numer;
(%o20) 15.15426224147926
(%i21) (1+%e)^%e,numer;
(%o21) 35.51003672578372
(%i22) (1+%e)^(2*%e+1),numer;
(%o22) 4688.613707948547
(%i23) sin(%e+1),numer;
(%o23) -.5452515566923345
With an extension to simp-%sin, we get:
(%i24) sin(%e),numer;
(%o24) .4107812905029088
In these expressions %e is not simplified to a number:
(%i27) %e^(2*x+1),numer;
(%o27) %e^(2*x+1)
(%i28) sin(%e^(2*x+1)),numer;
(%o28) sin(%e^(2*x+1))
Dieter Kaiser