Need help to interpret unusual Maxima notation for a derivative i.e. (d^{y+1}/dx^{y+1}) rho
- Subject: Need help to interpret unusual Maxima notation for a derivative i.e. (d^{y+1}/dx^{y+1}) rho
- From: Vishal Ramnath
- Date: Mon, 08 Jun 2009 17:49:44 +0200
Hello,
I need some help in understanding what this term in a PDE that I set up in wxMaxima 0.8.2 Windows XP actually is viz.
y+1
d
-------- rho
y+1
dx
(LaTeX code is $\frac{d^{y+1}}{dx^{y+1}} \rho$)
It doesn't quite make sense if interpreted as
(d/dy) (d/dy) (d/dx) rho
i.e. (y+1)-th derivative of the (d/dx) derivative of rho, for example in Maxima (d/dy)(d/dx rho) would be written as (d^y rho)/(dx^y) which is straightforward and understandable.
I attach the code below.
Thank you for any assistance.
Regards,
Vishal
ps. I use the Greek font symbols
"Burnett Equations - 8 June 2009"$
"This program sets up the Burnett equations (mass, momentum, energy) as explicit PDEs"$
"set \rho(x,y) u(x,y) v(x,y)"$
depends([%rho, u, v], [x, y])$
"first order components for stress tensor"$
%sigma[11, 1]: -%mu*((4/3)*diff(u, x) - (2/3)*diff(v, y));
%sigma[22, 1]: -%mu*((4/3)*diff(v, y) - (2/3)*diff(u, x));
%sigma[12, 1]: -%mu*(diff(u, y) + diff(v, x));
%sigma[21, 1]: -%mu*(diff(u, y) + diff(v, x));
"heat transfer components to first order"$
q[1, 1]: -%kappa*diff(T, x);
q[2, 1]: -%kappa*diff(T, y);
"set up Navier-Stokes equations i.e. Burnett equation truncated to first order"$
eq[1, 1]: diff(%rho*u, x) + diff(%rho*v, y);
eq[2, 1]: diff(%rho*u^2 + %sigma[11, 1], x) + diff(%rho*u*v + %sigma[21, 1], y);
eq[3, 1]: diff(%rho*u*v + %sigma[12, 1], x) + diff(%rho*v^2 + %sigma[22, 1], y);
"ideal gas equation of state"$
"Comment: I want to solve for u(x,y,t), v(x,y,t), \rho(x,y,t)"$
p: %rho*R*T;
%sigma[11, 2]: %sigma[11, 1]
+ (%mu^2/p)*(%alpha[1]*(diff(u, x))^2
+ %alpha[2]*(diff(u, y))^2
+ %alpha[3]*(diff(v, x))^2
+ %alpha[4]*(diff(v, y))^2
+ %alpha[5]*(diff(u, x))*(diff(v, y))
+ %alpha[6]*(diff(u, y))*(diff(v, x))
+ %alpha[7]*R*(diff(T, x, 2))
+ %alpha[8]*R*(diff(T, y, 2))
+ %alpha[9]*(R*T/%rho)*(diff(%rho, x, 2))
+ %alpha[10]*(R*T/%rho)*(diff(%rho, y, 2))
+ %alpha[11]*(R*T/%rho^2)*((diff(%rho, x))^2)
+ %alpha[12]*(R*T/%rho^2)*((diff(%rho, y))^2)
+ %alpha[13]*(R/T)*((diff(T, x))^2)
+ %alpha[14]*(R/T)*((diff(T, y))^2)
+ %alpha[15]*(R/%rho)*(diff(T, x))*(diff(%rho, x))
+ %alpha[16]*(R/%rho)*(diff(T, y))*(diff(%rho, y))
);
%sigma[22, 2]: %sigma[22, 1]
+ (%mu^2/p)*(%alpha[1]*(diff(v, y))^2
+ %alpha[2]*(diff(v, x))^2
+ %alpha[3]*(diff(u, y))^2
+ %alpha[4]*(diff(u, x))^2
+ %alpha[5]*(diff(u, x))*(diff(v, y))
+ %alpha[6]*(diff(u, y))*(diff(v, x))
+ %alpha[7]*R*(diff(T, y, 2))
+ %alpha[8]*R*(diff(T, x, 2))
+ %alpha[9]*(R*T/%rho)*(diff(%rho, y, 2))
+ %alpha[10]*(R*T/%rho)*(diff(%rho, x, 2))
+ %alpha[11]*(R*T/%rho^2)*((diff(%rho, y))^2)
+ %alpha[12]*(R*T/%rho^2)*((diff(%rho, x))^2)
+ %alpha[13]*(R/T)*((diff(T, y))^2)
+ %alpha[14]*(R/T)*((diff(T, x))^2)
+ %alpha[15]*(R/%rho)*(diff(T, y))*(diff(%rho, y))
+ %alpha[16]*(R/%rho)*(diff(T, x))*(diff(%rho, x))
);
%sigma[12, 2]: %sigma[12, 1] + (%mu^2/p)*(%beta[1]*(diff(u, x))*(diff(u, y))
+ %beta[2]*(diff(v, x))*(diff(v, y))
+ %beta[3]*(diff(u, x))*(diff(v, x))
+ %beta[4]*(diff(u, y))*(diff(v, y))
+ %beta[5]*R*(diff(T,x,y))
+ %beta[6]*(R*T/%rho)*(diff(%rho, x, y))
+ %beta[7]*(R/T)*(diff(T, x))*(diff(T, y))
+ %beta[8]*(R*T/%rho^2)*(diff(%rho, x))*(diff(%rho, y))
+ %beta[9]*(R/%rho)*(diff(%rho, x))*(diff(T, y))
+ %beta[10]*(R/%rho)*(diff(T, x))*(diff(%rho, y))
);
q[1, 2]: q[1, 1] + (%mu^2/%rho)*(%gamma[1]*(1/T)*(diff(T, x))*(diff(u, x))
+ %gamma[2]*(1/T)*(diff(T, x))*(diff(v, y))
+ %gamma[3]*(1/T)*(diff(T, y))*(diff(v, x))
+ %gamma[4]*(1/T)*(diff(T, y))*(diff(u, y))
+ %gamma[5]*(diff(u, x, 2))
+ %gamma[6]*(diff(u, y, 2))
+ %gamma[7]*(diff(v, x, y))
+ %gamma[8]*(1/%rho)*(diff(%rho, x))*(diff(u, x))
+ %gamma[9]*(1/%rho)*(diff(%rho, x))*(diff(v, y))
+ %gamma[10]*(1/%rho)*(diff(%rho, y))*(diff(v, x))
+ %gamma[11]*(1/%rho)*(diff(%rho, y))*(diff(u, y))
);
eq[1, 2]: diff(%rho*u, x) + diff(%rho*v, y);
eq[2, 2]: diff(%rho*u^2 + %sigma[11, 2], x) + diff(%rho*u*v + %sigma[21, 2], y);
eq[3, 2]: diff(%rho*u*v + %sigma[12, 2], x) + diff(%rho*v^2 + %sigma[22, 2], y);
"Equations are built up now!"$
"Discretize first order equations using finite differences..."$