recursive def of legendre polynomial



Can I use either ordinary functions or hashed arrays
to define recursively the legendre polynomial p(n,x)
defined by

p (n,x) := ((2*n-1)/n)*x*p (n-1,x) - ((n-1)/n)*p (n-2,x),

p (0,x) : 1,
p (1,x) : x,

so I get, eg., p (2,x) -->  - 1/2 + 3*x^2/ 2  .

Thanks in advance,

Ted Woollett