Sorry, the second line should of course be
df : diff( f, x )
On 9/14/09, Stavros Macrakis <macrakis at alum.mit.edu> wrote:
> In Maxima, it is generally best to work with *symbolic expressions*
> rather than *defined functions*.
>
> Thus your example would become
>
> f : (1-%e^(2*x))/(1+%e^(2*x));
> df : diff(f(x),x);
>
> at(df,x=1);
> or
> ev(df,x=1);
> or
> subst(x,1,df)
> or
> subst(x=1,df)
>
> If you want to define a function to calculate with, you can also define it:
>
> define( myfun(x), df )
>
> There is also a shortcut syntax for this:
>
> myfun(x) := ''(df)$
>
> (note: that is two single-quotes in a row, not a double-quote)
>
> -s
>
>
>
> On Mon, Sep 14, 2009 at 4:52 AM, Hans W. Hofmann <hawe at chefmail.de> wrote:
>> f(x):=(1-%e^(2*x))/(1+%e^(2*x));
>> df(x):=diff(f(x),x)$
>> df(1);
>> (%o11) Non-variable 2nd argument to diff:1
>> #0: df(x=1) -- an error. ?To debug this try debugmode(true);
>>
>> I'm not able to calculate diff'd and intergrate'd functions
>> how to do?
>>
>> Gru? HW
>>
>> _______________________________________________
>> Maxima mailing list
>> Maxima at math.utexas.edu
>> http://www.math.utexas.edu/mailman/listinfo/maxima
>>
>