openmcl bigfloat benchmark (was: Maxima + openmcl windows installer)
- Subject: openmcl bigfloat benchmark (was: Maxima + openmcl windows installer)
- From: Barton Willis
- Date: Mon, 14 Dec 2009 19:54:32 -0600
I thought the slowness in bfloats might be due to overall slowness
with integer arithmetic. But look at my benchmark 4:
Benchmark 4: hsum(5000), where
(defun $hsum (n)
(let ((s 0))
(while (> n 0)
(setq s (+ s (/ 1 n)))
(decf n))
(list '(rat simp) (numerator s) (denominator s))))
CCL 1.4 GCL 2.6.8
Benchmark 1 0.6720 sec 0.080 sec
Benchmark 2 71.9380 4.73
Benchmark 4 0.780 29.17
Barton
-----maxima-bounces at math.utexas.edu wrote: -----
>To:?Volker?van?Nek?<volkervannek at googlemail.com>
>From:?Jaime?Villate?<villate at fe.up.pt>
>Sent?by:?maxima-bounces at math.utexas.edu
>Date:?12/14/2009?04:06PM
>cc:?Maxima at math.utexas.edu,?Andrej?Vodopivec?<andrej.vodopivec at gmail.com>
>Subject:?Re:?[Maxima]?openmcl?bigfloat?benchmark?(was:?Maxima?+?openmcl
>windows?installer)
>
>On?Mon,?2009-12-14?at?21:52?+0100,?Volker?van?Nek?wrote:
>>?I?have?noticed?that?bigfloat?computations?are?quite?slow?with?Clozure.
>
>I?can?confirm?that?with?Maxima?5.10.1?+?Lisp?Clozure?Common?Lisp?Version
>1.3-RC1-r11719M?(in?Ubuntu?amd64)?even?though?CCL?is?very?fast?in
>floating?point?calculations.
>
>I?used?the?following?3?benchmark?commands:
>
>1-?bfloat(%pi),?fpprec:10000$
>2-?bfloat(%pi),?fpprec:100000$
>3-?rk([x*(y^2+2*x*y-x-15*y/4+1),?y*(-2*x^2-x*y+y+15*x/4-1)],[x,
>y],[0.26,0.26],[t,0,500,0.1])$
>(numerical?solution?of?a?non-linear?differential?equation).
>
>Results?(times?in?seconds):
>??????????????CLISP?2.44.1??????SBCL?1.0.18???CCL?1.3-RC1-r11719M
>Benchmark?1?????0.0700????????????0.0500??????????0.4200
>Benchmark?2?????4.5700????????????3.3200?????????30.9300
>Benchmark?3?????7.6400????????????1.7600??????????1.5200
>
>CCL?is?fastest?one?in?floating-point?calculations,?but?about?10?times
>slower?than?SBCL?in?the?bfloat?calculation.
>
>Regards,
>Jaime
>
>
>_______________________________________________
>Maxima?mailing?list
>Maxima at math.utexas.edu
>http://www.math.utexas.edu/mailman/listinfo/maxima